Skip to main content
Log in

Aliphatic and aromatic biomarkers for fingerprinting of weathered chemically dispersed oil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study evaluated the applicability of eight types of biomarkers namely, adamantanes, diamantanes, sesquiterpanes, steranes, terpanes, TA-steranes, MA-steranes, and alkylated PAHs, to characterize chemically dispersed oil (CDO) after the 60-day weathering. The stability of diagnostic ratios of the selected biomarkers was evaluated and summarized. The results indicated that the concentrations of biomarkers with low molecular weight, such as adamantanes, diamantanes, and sesquiterpanes, in CDO were markedly affected by weathering and the associated diagnostic ratios were changed extensively. Most of the alkylated PAHs were degraded during weathering as well. These biomarkers thus were not recommended for characterizing CDO. The majority of the terpanes, steranes, TA-steranes, and MA-steranes could be used for weathered CDO fingerprinting due to the relatively stable diagnostic ratios. The findings could help to identify applicable biomarkers for fingerprinting of weathered dispersed oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aeppli C, Carmichael CA, Nelson RK, Lemkau KL, Graham WM, Redmond MC, Valentine DL, Reddy CM (2012) Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environ Sci Technol 46:8799–8807

    Article  CAS  Google Scholar 

  • Aeppli C, Nelson RK, Radovic JR, Carmichael CA, Valentine DL, Reddy CM (2014) Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon oil. Environ Sci Technol 48:6726–6734

    Article  CAS  Google Scholar 

  • Bacosa HP, Erdner DL, Liu Z (2015) Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site. Mar Pollut Bull 95:265–272

    Article  CAS  Google Scholar 

  • Bao M, Sun P, Yang X, Wang X, Wang L, Cao L, Li F (2014) Biodegradation of marine surface floating crude oil in a large-scale field simulated experiment. Environ Sci: Process Impacts 16:1948–1956

    CAS  Google Scholar 

  • Bayona JM, Domínguez C, Albaigés J (2015) Analytical developments for oil spill fingerprinting. Trends Environ Anal Chem 5:26–34

    Article  CAS  Google Scholar 

  • Bost F, Frontera-Suau R, McDonald T, Peters K, Morris P (2001) Aerobic biodegradation of hopanes and norhopanes in Venezuelan crude oils. Org Geochem 32:105–114

    Article  CAS  Google Scholar 

  • Chandru K, Zakaria MP, Anita S, Shahbazi A, Sakari M, Bahry PS, Mohamed CAR (2008) Characterization of alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) in tar-balls collected from the East Coast of Peninsular Malaysia. Mar Pollut Bull 56:950–962

    Article  CAS  Google Scholar 

  • Chen J, Fu J, Sheng G, Liu D, Zhang J (1996) Diamondoid hydrocarbon ratios: novel maturity indices for highly mature crude oils. Org Geochem 25:179–190

    Article  CAS  Google Scholar 

  • da Silva DA, Bícego MC (2010) Polycyclic aromatic hydrocarbons and petroleum biomarkers in São Sebastião Channel, Brazil: assessment of petroleum contamination. Mar Environ Res 69:277–286

    Article  CAS  Google Scholar 

  • Daling PS, Faksness L-G, Hansen AB, Stout SA (2002) Improved and standardized methodology for oil spill fingerprinting. Environ Forensic 3:263–278

    Article  CAS  Google Scholar 

  • Daling PS, Leirvik F, Almås IK, Brandvik PJ, Hansen BH, Lewis A, Reed M (2014) Surface weathering and dispersibility of MC252 crude oil. Mar Pollut Bull 87:300–310

    Article  CAS  Google Scholar 

  • Gallotta FD, Christensen JH (2012) Source identification of petroleum hydrocarbons in soil and sediments from Iguaçu River watershed, Paraná, Brazil using the CHEMSIC method (CHEMometric analysis of selected ion chromatograms). J Chromatogr A 1235:149–158

    Article  CAS  Google Scholar 

  • Gao X, Zhu S, Zhang W, Li D, Dai W, He S (2016) Analysis of crude oils using gas purge microsyringe extraction coupled to comprehensive two dimensional gas chromatography-time-of-flight mass spectrometry. Fuel 182:788–797

    Article  CAS  Google Scholar 

  • Hostettler FD, Wang Y, Huang Y, Cao W, Bekins BA, Rostad CE, Kulpa CF, Laursen A (2007) Forensic fingerprinting of oil-spill hydrocarbons in a methanogenic environment—Mandan, ND and Bemidji, MN. Environ Forensic 8:139–153

    Article  CAS  Google Scholar 

  • Lessard RR, DeMarco G (2000) The significance of oil spill dispersants. Spill Sci Technol Bull 6:59–68

    Article  CAS  Google Scholar 

  • Macnaughton SJ, Swannell R, Daniel F, Bristow L (2003) Biodegradation of dispersed Forties crude and Alaskan North Slope oils in microcosms under simulated marine conditions. Spill Sci Technol Bull 8:179–186

    Article  CAS  Google Scholar 

  • Mulabagal V, Yin F, John G, Hayworth J, Clement T (2013) Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline. Mar Pollut Bull 70:147–154

    Article  CAS  Google Scholar 

  • Prince RC (2015) Oil spill dispersants: boon or bane? Environ Sci Technol 49:6376–6384

    Article  CAS  Google Scholar 

  • Prince RC, Garrett RM, Bare RE, Grossman MJ, Townsend T, Suflita JM, Lee K, Owens EH, Sergy GA, Braddock JF (2003) The roles of photooxidation and biodegradation in long-term weathering of crude and heavy fuel oils. Spill Sci Technol Bull 8:145–156

    Article  CAS  Google Scholar 

  • Radović JR, Aeppli C, Nelson RK, Jimenez N, Reddy CM, Bayona JM, Albaigés J (2014) Assessment of photochemical processes in marine oil spill fingerprinting. Mar Pollut Bull 79:268–277

    Article  CAS  Google Scholar 

  • Romero-Sarmiento M-F, Riboulleau A, Vecoli M, Versteegh GJ-M (2011) Aliphatic and aromatic biomarkers from Gondwanan sediments of Late Ordovician to Early Devonian age: an early terrestrialization approach. Org Geochem 42:605–617

    Article  CAS  Google Scholar 

  • Song X, Zhang B, Chen B, Cai Q (2016) Use of sesquiterpanes, steranes, and terpanes for forensic fingerprinting of chemically dispersed oil. Water Air Soil Pollut 227:281

    Article  CAS  Google Scholar 

  • Sorial GA, Koran KM, Holder E, Venosa AD, King DW (2001) Development of a rational oil spill dispersant effectiveness protocol, International Oil Spill Conference. American Petroleum Institute, pp. 471–478

  • Springer M, Garcia D, Gonçalves F, Landau L, Azevedo D (2010) Diamondoid and biomarker characterization of oils from the Llanos Orientales Basin, Colombia. Org Geochem 41:1013–1018

    Article  CAS  Google Scholar 

  • Stout SA, Uhler AD, McCarthy KJ (2001) A strategy and methodology for defensibly correlating spilled oil to source candidates. Environ Forensic 2:87–98

    Article  CAS  Google Scholar 

  • Stout SA, Payne JR, Emsbo-Mattingly SD, Baker G (2016) Weathering of field-collected floating and stranded Macondo oils during and shortly after the Deepwater Horizon oil spill. Mar Pollut Bull 105:7–22

    Article  CAS  Google Scholar 

  • Swannell RP, Daniel F (1999) Effect of dispersants on oil biodegradation under simulated marine conditions, International Oil Spill Conference. American Petroleum Institute, pp. 169–176

  • Tsutsumi H, Hirota Y, Hirashima A (2000) Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. II. Toxicity of a bioremediation agent with microbiological cultures in aquatic organisms. Mar Pollut Bull 40:315–319

    Article  CAS  Google Scholar 

  • Wang Z, Fingas MF (2003) Development of oil hydrocarbon fingerprinting and identification techniques. Mar Pollut Bull 47:423–452

    Article  CAS  Google Scholar 

  • Wang Z, Stout S (2010) Oil spill environmental forensics: fingerprinting and source identification. Academic Press, Amsterdam

    Google Scholar 

  • Wang Z, Fingas M, Blenkinsopp S, Sergy G, Landriault M, Sigouin L, Foght J, Semple K, Westlake D (1998) Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J Chromatogr A 809:89–107

    Article  CAS  Google Scholar 

  • Wang Z, Yang C, Fingas M, Hollebone B, Peng X, Hansen AB, Christensen JH (2005) Characterization, weathering, and application of sesquiterpanes to source identification of spilled lighter petroleum products. Environ Sci Technol 39:8700–8707

    Article  CAS  Google Scholar 

  • Wang Z, Stout SA, Fingas M (2006a) Forensic fingerprinting of biomarkers for oil spill characterization and source identification. Environ Forensic 7:105–146

    Article  CAS  Google Scholar 

  • Wang Z, Yang C, Hollebone B, Fingas M (2006b) Forensic fingerprinting of diamondoids for correlation and differentiation of spilled oil and petroleum products. Environ Sci Technol 40:5636–5646

    Article  CAS  Google Scholar 

  • Wang Z, Yang C, Yang Z, Sun J, Hollebone B, Brown C, Landriault M (2011) Forensic fingerprinting and source identification of the 2009 Sarnia (Ontario) oil spill. J Environ Monit 13:3004–3017

    Article  CAS  Google Scholar 

  • Wang C, Chen B, Zhang B, He S, Zhao M (2013a) Fingerprint and weathering characteristics of crude oils after Dalian oil spill, China. Mar Pollut Bull 71:64–68

    Article  CAS  Google Scholar 

  • Wang C, Hu X, He S, Liu X, Zhao M (2013b) Source diagnostic and weathering indicators of oil spills utilizing bicyclic sesquiterpanes. Acta Oceanol Sin 32:79–84

    Article  CAS  Google Scholar 

  • Wei Z, Moldowan JM, Peters KE, Wang Y, Xiang W (2007) The abundance and distribution of diamondoids in biodegraded oils from the San Joaquin Valley: implications for biodegradation of diamondoids in petroleum reservoirs. Org Geochem 38:1910–1926

    Article  CAS  Google Scholar 

  • Williams J, Bjorøy M, Dolcater D, Winters J (1986) Biodegradation in South Texas Eocene oils—effects on aromatics and biomarkers. Org Geochem 10:451–461

    Article  CAS  Google Scholar 

  • Yang C, Wang Z, Hollebone BP, Brown CE, Landriault M (2009) Characteristics of bicyclic sesquiterpanes in crude oils and petroleum products. J Chromatogr A 1216:4475–4484

    Article  CAS  Google Scholar 

  • Zhuang M, Abulikemu G, Campo P, Platten WE, Suidan MT, Venosa AD, Conmy RN (2016) Effect of dispersants on the biodegradation of South Louisiana crude oil at 5 and 25° C. Chemosphere 144:767–774

    Article  CAS  Google Scholar 

Download references

Funding

This research is supported by Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI), Research & Development Corporation (RDC) of Newfoundland and Labrador, and Environment and Climate Change Canada (ECCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiyu Zhang.

Additional information

Responsible editor: Roland Peter Kallenborn

Electronic supplementary material

ESM 1

(DOCX 77.2 kb)

ESM 2

(DOCX 13.3 kb)

ESM 3

(DOCX 15.8 kb)

ESM 4

(DOCX 15.8 kb)

ESM 5

(DOCX 15.7 kb)

ESM 6

(DOCX 16.5 kb)

ESM 7

(DOCX 16.7 kb)

ESM 8

(DOCX 15.2 kb)

ESM 9

(DOCX 15.3 kb)

ESM 10

(DOCX 16.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Zhang, B., Chen, B. et al. Aliphatic and aromatic biomarkers for fingerprinting of weathered chemically dispersed oil. Environ Sci Pollut Res 25, 15702–15714 (2018). https://doi.org/10.1007/s11356-018-1730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1730-y

Keywords

Navigation