Skip to main content
Log in

Geochemistry of rare earth elements within waste rocks from the Montviel carbonatite deposit, Québec, Canada

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Several rare earth element (REE) mine projects around the world are currently at the feasibility stage. Unfortunately, few studies have evaluated the contamination potential of REE and their effects on the environment. In this project, the waste rocks from the carbonatites within the Montviel proterozoic alkaline intrusion (near Lebel-sur-Quévillon, Quebec, Canada) are assessed in this research. The mineralization is mainly constituted by light REE (LREE) fluorocarbonates (qaqarssukite-Ce, kukharenkoite-Ce), LREE carbonates (burbankite, Sr-Ba-Ca-REE, barytocalcite, strontianite, Ba-REE-carbonates), and phosphates (apatite, monazite). The gangue minerals are biotites, chlorite, albite, ankerite, siderite, and calcite. The SEM-EDS analyses show that (i) the majority of REE are associated with the fine fraction (< 106 μm), (ii) REE are mainly associated with carbonates, (iii) all analyzed minerals preferably contain LREE (La, Ce, Pr, Nd, Sm, Eu), (iv) the sum of LREE in each analyzed mineral varies between ~ 3 and 10 wt%, (v) the heavy REE (HREE) identified are Gd and Yb at < 0.4 wt%, and (vi) three groups of carbonate minerals were observed containing variable concentrations of Ca, Na, and F. Furthermore, the mineralogical composition of REE-bearing minerals, REE mobility, and REE speciation was investigated. The leachability and geochemical behavior of these REE-bearing mine wastes were tested using normalized kinetic testing (humidity cells). Leachate results displayed higher LREE concentrations, with decreasing shale-normalized patterns. Thermodynamical equilibrium calculations suggest that the precipitation of secondary REE minerals may control the REE mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adam K, Kourtis A, Gazea B, Kontopoulos A (1997) Evaluation of static tests used to predict the potential for acid drainage generation at sulfide mine sites. Trans Instn Min Metall Sect A: Min Ind 106:A1–A8

    Google Scholar 

  • Bau M (1999) Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim Cosmochim Acta 63:67–77. https://doi.org/10.1016/S0016-7037(99)00014-9

  • Benzaazoua M, Bussiére B, Dagenais AM, Archambault M (2004) Kinetic tests comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environ Geol 46(8):1086–1101. https://doi.org/10.1007/s00254-004-1113-1

    Article  CAS  Google Scholar 

  • Bussière B (2007) Colloquium 2004: hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches. Can Geotech J 44(9):1019–1052. https://doi.org/10.1139/t07-040

    Article  Google Scholar 

  • David J, Dion C, Goutier J (2006) Datations U-Pb effectuées dans la Sous-province de l’Abitibi à la suite des travaux de 2004-2005. Ressources naturelles et Faune, RP 2006-04, Quebéc

    Google Scholar 

  • Desharnais G, Duplessis C (2011) Montviel core zone REE mineral resource estimate technical report. Geomega Resources Inc Member of SGS group (SGS SA), Quebec

    Google Scholar 

  • Edahbi M, Plante B, Bouzahzah H, Benzaazoua M (2015) Mineralogical and geochemical study of rare earth elements from a carbonatite deposit. Proceedings of the 13th SGA biennial meeting, Nancy, France

  • Gimeno Serrano MJ, Auqué Sanz LF, Nordstrom DK (2000) REE speciation in low-temperature acidic waters and the competitive effects of aluminum. Chem Geol 165(3-4):167–180. https://doi.org/10.1016/S0009-2541(99)00166-7

    Article  CAS  Google Scholar 

  • Gonzalez V, Vignati DAL, Leyval C, Giamberini L (2014) Environmental fate and ecotoxicity of lanthanides: are they a uniform group beyond chemistry? Environ Int 71:148–157. https://doi.org/10.1016/j.envint.2014.06.019

    Article  CAS  Google Scholar 

  • Goutier J (2006) Géologie de la région du lac au Goéland (32F/15). Ressources naturelles et Faune, Québec

    Google Scholar 

  • Jaireth S, Hoatson DM, Miezitis Y (2014) Geological setting and resources of the major rare-earth-element deposits in Australia. Ore Geol Rev 62:72–128. https://doi.org/10.1016/j.oregeorev.2014.02.008

    Article  Google Scholar 

  • Janssen RPT, Verweij W (2003) Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands. Water Res 37(6):1320–1350. https://doi.org/10.1016/S0043-1354(02)00492-X

    Article  CAS  Google Scholar 

  • Johannesson KH, Lyons WB, Yelken MA, Gaudette HE, Stetzenbach KJ (1996) Geochemistry of the rare-earth elements in hypersaline and dilute acidic natural terrestrial waters: complexation behavior and middle rare-earth element enrichments. Chem Geol 133(1-4):125–144. https://doi.org/10.1016/S0009-2541(96)00072-1

    Article  CAS  Google Scholar 

  • Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H (2011) Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat Geosci 4(8):535–539. https://doi.org/10.1038/ngeo1185

    Article  CAS  Google Scholar 

  • Kwitko-Ribeiro R (2012) New sample preparation developments to minimize mineral segregation in process mineralogy. In: Proceedings of the 10th International Congress for Applied Mineralogy (ICAM). Springer, pp 411–417. https://doi.org/10.1007/978-3-642-27682-8_49

  • Lawrence R, Wang Y (1996) Determination of neutralization potential for acid rock drainage prediction. MEND project 1:38

  • Leybourne MI, Goodfellow WD, Boyle DR, Hall GM (2000) Rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in groundwaters associated with Zn–Pb massive sulphide deposits. Appl Geochem 15(6):695–723. https://doi.org/10.1016/S0883-2927(99)00096-7

    Article  CAS  Google Scholar 

  • Lipin BR (1989) Geochemistry and mineralogy of rare earth elements. Rev Mineral 21

  • McLellan BC, Corder GD, Golev A, Ali SH (2014) Sustainability of the rare earths industry. Procedia Environ Sci 20:280–287. https://doi.org/10.1016/j.proenv.2014.03.035

    Article  Google Scholar 

  • Merkus HG (2009) Particle size measurements: fundamentals, practice, quality, vol 17. Springer Science & Business Media.

  • Bau M (1999) Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta 63(1):67-77

    Article  CAS  Google Scholar 

  • Miekeley N, Coutinho de Jesus H, Porto da Silveira CL, Linsalata P, Morse R (1992) Rare-earth elements in groundwaters from the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil. J Geochem Explor 45(1-3):365–387. https://doi.org/10.1016/0375-6742(92)90131-Q

    Article  CAS  Google Scholar 

  • Nadeau O, Stevenson R, Jébrak M (2014) The Archean magmatic-hydrothermal system of Lac Shortt (Au-REE), Abitibi, Canada: insights from carbonate fingerprinting. Chem Geol 387:144–156. https://doi.org/10.1016/j.chemgeo.2014.08.021

    Article  CAS  Google Scholar 

  • Nadeau O, Cayer A, Pelletier M, Stevenson R, Jébrak M (2015) The Paleoproterozoic Montviel carbonatite-hosted REE–Nb deposit, Abitibi, Canada: geology, mineralogy, geochemistry and genesis. Ore Geol Rev 67:314–335. https://doi.org/10.1016/j.oregeorev.2014.12.017

    Article  Google Scholar 

  • Nadeau O, Stevenson R, Jébrak M (2016) Evolution of Montviel alkaline-carbonatite complex by coupled fractional crystallization, fluid mixing and metasomatism—part II: trace element and Sm–Nd isotope geochemistry of metasomatic rocks: implications for REE-Nb mineralization. Ore Geol Rev 72(Part 1):1163–1173. https://doi.org/10.1016/j.oregeorev.2015.09.021

    Article  Google Scholar 

  • Parkhurst DL, Appelo C (2013) Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv

  • Plante B, Benzaazoua M, Bussière B (2010) Predicting geochemical behaviour of waste rock with low acid generating potential using laboratory kinetic tests. Mine Water Environ 30:2–21. https://doi.org/10.1007/s10230-010-0127-Z.

    Article  Google Scholar 

  • Plante B, Bussière B, Benzaazoua M (2012) Static tests response on 5 Canadian hard rock mine tailings with low net acid-generating potentials. J Geochem Explor 114:57–69. https://doi.org/10.1016/j.gexplo.2011.12.003.

    Article  CAS  Google Scholar 

  • Price WA (2009) Prediction manual for drainage chemistry from sulphidic geologic materials. MEND report 1:579

  • Prinčič T, Štukovnik P, Pejovnik S, De Schutter G, Bokan Bosiljkov V (2013) Observations on dedolomitization of carbonate concrete aggregates, implications for ACR and expansion. Cem Concr Res 54:151–160. https://doi.org/10.1016/j.cemconres.2013.09.005

    Article  Google Scholar 

  • Prudêncio MI, Valente T, Marques R, Braga MAS, Pamplona J (2015) Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation. Chemosphere 138:691–700. https://doi.org/10.1016/j.chemosphere.2015.07.064

    Article  Google Scholar 

  • Prudêncio MI, Valente T, Marques R, Braga MAS, Pamplona J (2017) Rare earth elements, iron and manganese in ochre-precipitates and wetland soils of a passive treatment system for acid mine drainage. Procedia Earth Planet Sci 17:932–935. https://doi.org/10.1016/j.proeps.2017.01.024

    Article  Google Scholar 

  • Purdy C (2014) The geochemical and mineralogical controls on the environmental mobility of rare earth elements from tailings, Nechalacho Deposit, Northwest Territories

  • Sapsford DJ, Bowell RJ, Geroni JN, Penman KM, Dey M (2012) Factors influencing the release rate of uranium, thorium, yttrium and rare earth elements from a low grade ore. Miner Eng 39:165–172. https://doi.org/10.1016/j.mineng.2012.08.002

    Article  CAS  Google Scholar 

  • Sneller FEC, Kalf FD, Weltje L, Wezel APV (2000) Maximum permissible concentrations and negligible concentrations for rare earth elements (REEs). Research for Man and Environnement, RIVM report 601501011. http://www.rivmnl/bibliotheek/rapporten/601501011html

  • Sobek AA (1978) Field and laboratory methods applicable to overburdens and minesoils. Industrial Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency

  • Steinmann M, Stille P (2008) Controls on transport and fractionation of the rare earth elements in stream water of a mixed basaltic–granitic catchment basin (Massif Central, France). Chem Geol 254(1-2):1–18. https://doi.org/10.1016/j.chemgeo.2008.04.004

    Article  CAS  Google Scholar 

  • Stille P, Steinmann M, Pierret MC (2006) The impact of vegetation on fractionation of rare earth elements (REE) during water–rock interaction. J Geochem Explor 88:341–344. https://doi.org/10.1016/j.gexplo.2005.08.070.

    Article  CAS  Google Scholar 

  • Sun H, Zhao F, Zhang M, Li J (2011) Behavior of rare earth elements in acid coal mine drainage in Shanxi Province, China. Environ Earth Sci 67(1):205–213. https://doi.org/10.1007/s12665-011-1497-7

    Article  Google Scholar 

  • Valente TM, Antunes M, Braga AS, Prudêncio M, Marques R, Pamplona J (2012) Mineralogical attenuation for metallic remediation in a passive system for mine water treatment. Environ Earth Sci 66(1):39–54. https://doi.org/10.1007/s12665-011-1205-7

    Article  Google Scholar 

  • Verplanck PL, Nordstrom DK, Taylor HE, Kimball BA (2004) Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation. Appl Geochem 19(8):1339–1354. https://doi.org/10.1016/j.apgeochem.2004.01.016

    Article  CAS  Google Scholar 

  • Villeneuve M, Bussière B, Benzaazoua M, Aubertin M, Monroy M (2003) The influence of kinetic test type on the geochemical response of low acid generating potential tailings. Proc Tailings Mine Waste 3:269–279

    Google Scholar 

  • Villeneuve M, Bussière B, Benzaazoua M, Aubertin M (2009) Assessment of interpretation methods for kinetic tests performed on tailings having a low acid generating potential. Proceedings, Securing the Future and 8th ICARD, Skelleftea, Sweden

  • Wang L, Liang T (2014) Effects of exogenous rare earth elements on phosphorus adsorption and desorption in different types of soils. Chemosphere 103:148–155. https://doi.org/10.1016/j.chemosphere.2013.11.050

    Article  CAS  Google Scholar 

  • Yang XJ, Lin A, Li X-L, Wu Y, Zhou W, Chen Z (2013) China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ Dev 8:131–136. https://doi.org/10.1016/j.envdev.2013.03.006

    Article  Google Scholar 

  • Yusoff ZM, Ngwenya BT, Parsons I (2013) Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chem Geol 349–350:71–86. https://doi.org/10.1016/j.chemgeo.2013.04.016

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the URSTM staff for their support with laboratory work and NSERC/Geomega Resources for funding of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Plante.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edahbi, M., Plante, B., Benzaazoua, M. et al. Geochemistry of rare earth elements within waste rocks from the Montviel carbonatite deposit, Québec, Canada. Environ Sci Pollut Res 25, 10997–11010 (2018). https://doi.org/10.1007/s11356-018-1309-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1309-7

Keywords

Navigation