Skip to main content

Advertisement

Log in

Cobalt speciation and phytoavailability in fluvo-aquic soil under treatments of spent mushroom substrate from Pleurotus ostreatus

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cobalt (Co) is a nutrient for soil microorganisms and crops, as well as a worldwide industrial pollutant. When the level of Co exceeds the acceptable limit, this heavy metal can lead to devastating consequences for soil environments. There is considerable attention and concern about elevated levels of Co contaminating soil and crops. Spent mushroom substrate (SMS) is a potential amendment for the adsorption of pollutants, which has potential for resolving Co-polluted soil that spans the world. To investigate the environmental behavior and risks associated with Co in fluvo-aquic soil under specific treatments of SMS from Pleurotus ostreatus, a lab-scale pot experiment was conducted. SMS and exogenous Co were added to soil, which was retained for approximately 30 days. Pakchois (Brassica chinensis L.) were planted in the treated soil for 28 days until harvest. The Co speciation in soil (modified BCR sequential extraction) and Co accumulation in pakchoi tissue were studied. When the SMS concentration was within a range of 0 to 9 g kg−1 (total amount = 0 to 2.7 g), Co in the acid-soluble fraction was transformed to the oxidizable fraction in soil, resulting from the mesh structure on the surface of SMS, as well as the amide and carboxyl in the SMS molecular structure. In this situation, the Co accumulation levels in the pakchois decreased significantly (P < 0.05), indicating the efficacy of SMS for reducing Co phytoavailability. However, when the SMS concentration reached 12 g kg−1, the phytoavailability increased again (P < 0.05). When the SMS concentration ranged from 8.86 to 9.51 g kg−1, the Co phytoavailability in soil reached a minimum, while the biomass of pakchoi reached a maximum. Conclusively, SMS from Pleurotus ostreatus are effective for reducing the Co phytoavailability, as well as for reducing the chance of Co transferring into a human’s body through crops (i.e., food consumption). In order to achieve the optimum efficacy, the SMS concentration in soil should be maintained at a range of 8.86 to 9.51 g kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akar T, Arslan S, Akar ST (2013) Utilization of Thamnidium elegans fungal culture in environmental cleanup: a reactive dye biosorption study. Ecol Eng 58:363–370

    Article  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Antimanon S, Chamkhuy W, Sutthiwattanakul S, Laoteng K (2018) Efficient production of arachidonic acid of Mortierella sp. by solid-state fermentation using combinatorial medium with spent mushroom substrate. Chem Pap 72:2899–2908

    Article  CAS  Google Scholar 

  • Antisari LV, Carbone S, Gatti A, Ferrando S, Nacucchi M, De Pascalis F, Gambardella C, Badalucco L, Laudicina VA (2016) Effect of cobalt and silver nanoparticles and ions on Lumbricus rubellus health and on microbial community of earthworm faeces and soil. Appl Soil Ecol 108:62–71

    Article  Google Scholar 

  • Bashir S, Shaaban M, Hussain Q, Mehmood S, Zhu J, Fu Q, Aziz O, Hu H (2018) Influence of organic and inorganic passivators on Cd and Pb stabilization and microbial biomass in a contaminated paddy soil. J Soils Sediments 18:2948–2959

    Article  CAS  Google Scholar 

  • Benhaddya ML, Hadjel M (2014) Spatial distribution and contamination assessment of heavy metals in surface soils of Hassi Messaoud, Algeria. Environ Earth Sci 71:1473–1486

    Article  CAS  Google Scholar 

  • Benhaddya ML, Boukhelkhal A, Halis Y, Hadjel M (2016) Human health risks associated with metals from urban soil and road dust in an oilfield area of southeastern Algeria. Arch Environ Contam Toxicol 70:556–571

    Article  CAS  Google Scholar 

  • Brunetti G, Soler-Rovira P, Matarrese F, Senesi N (2009) Composition and structural characteristics of humified fractions during the co-composting process of spent mushroom substrate and wheat straw. J Agric Food Chem 57:10859–10865

    Article  CAS  Google Scholar 

  • Bustamante MA, Paredes C, Marhuenda-Egea FC, Pérez-Espinosa A, Bernal MP, Moral R (2008) Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere 72:551–557

    Article  CAS  Google Scholar 

  • Calisi A, Zaccarelli N, Lionetto MG, Schettino T (2013) Integrated biomarker analysis in the earthworm Lumbricus terrestris: application to the monitoring of soil heavy metal pollution. Chemosphere 90:2637–2644

    Article  CAS  Google Scholar 

  • Cao X, Wahbi A, Ma L, Li B, Yang Y (2009) Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. J Hazard Mater 164:555–564

    Article  CAS  Google Scholar 

  • Chagnes A, Pospiech B (2013) A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J Chem Technol Biotechnol 88:1191–1199

    Article  CAS  Google Scholar 

  • Choppala GK, Bolan NS, Megharaj M, Chen Z, Naidu R (2012) The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J Environ Qual 41:1175–1184

    Article  CAS  Google Scholar 

  • Corrêa RCG, da Silva BP, Castoldi R, Kato CG, de Sá-Nakanishi AB, Peralta RA, de Souza CG, Bracht A, Peralta RM (2016) Spent mushroom substrate of Pleurotus pulmonarius: a source of easily hydrolyzable lignocellulose. Folia Microbiol 61:439–448

    Article  CAS  Google Scholar 

  • Courtney RG, Jordan SN, Harrington T (2009) Physico-chemical changes in bauxite residue following application of spent mushroom compost and gypsum. Land Degrad Dev 20:572–581

    Article  Google Scholar 

  • Cuong DT, Obbard JP (2006) Metal speciation in coastal Filgueiras e sediments from Singapore using a modified BCR-sequential extraction procedure. Appl Geochem 21:1335–1346

    Article  CAS  Google Scholar 

  • Dash HR, Das S (2015) Bioremediation of inorganic mercury through volatilization and biosorption by transgenic Bacillus cereus BW-03(pPW-05). Int Biodeterior Biodegrad 103:179–185

    Article  CAS  Google Scholar 

  • Davidson CM, Urquhart GJ, Ajmone-Marsan F, Biasioli M, Duarte A, Díaz-Barrientos E, Grčman H, Hossack I, Hursthouse AS, Madrid L, Rodrigues S, Zupan M (2006) Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure. Anal Chim Acta 565:63–72

    Article  CAS  Google Scholar 

  • Deng SP, Tabatabai MA (1997) Effect of tillage and residue management on enzyme activities in soils: III. Phosphatases and arylsulfatase. Biol Fertil Soils 24:141–146

    Article  CAS  Google Scholar 

  • Eigenberg RA, Doran JW, Nienaber JA, Ferguson RB, Woodbury BL (2002) Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop. Agric Ecosyst Environ 88(2):183–193

    Article  Google Scholar 

  • Filgueiras AV, Lavilla I, Bendicho C (2004) Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study. Sci Total Environ 330:115–129

    Article  CAS  Google Scholar 

  • Gheshlaghi ZT, McLaren RG, Adams JA (2008) Effect of treated zeolite, iron waste, and liming on phytoavailability of Zn, Cu, and Ni in long-term biosolids-amended soils. Aus J Soil Res 46:509–516

    Article  CAS  Google Scholar 

  • Gondek K, Mierzwa-Hersztek M, Kopeć M (2018) Mobility of heavy metals in sandy soil after application of composts produced from maize straw, sewage sludge and biochar. J Environ Manage 201:87–95

    Article  CAS  Google Scholar 

  • Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116:513–528

    Article  CAS  Google Scholar 

  • Guo XF, Wei ZB, Wu QT, Qiu JR, Zhou JL (2011) Cadmium and zinc accumulation in maize grain as affected by cultivars and chemical fixation amendments. Pedosphere 21:650–656

    Article  CAS  Google Scholar 

  • Hachicha R, Rekik O, Hachicha S, Ferchichi M, Woodward S, Moncef N, Cegarra J, Mechichi T (2012) Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere 88:677–682

    Article  CAS  Google Scholar 

  • Hu XJ, Gu HD, Zang TT, Jin Y, Qu JJ (2014) Biosorption mechanism of Cu2+ by innovative immobilized spent substrate of fragrant mushroom biomass. Ecol Eng 73:509–513

    Article  Google Scholar 

  • Impellitteri CA, Lu Y, Saxe JK, Allen HE, Peijnenburg WJ (2002) Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environ Int 28:401–410

    Article  CAS  Google Scholar 

  • Janoš P, Vávrová J, Herzogová L, Pilařová V (2010) Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: a sequential extraction study. Geoderma 159:335–341

    Article  CAS  Google Scholar 

  • Javaid A, Bajwa R, Shafique U, Anwar J (2011) Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenergy 35:1675–1682

    Article  CAS  Google Scholar 

  • Jensen AA, Tuchsen F (1990) Cobalt exposure and cancer risk. Crit Rev Toxicol 20:427–437

    Article  CAS  Google Scholar 

  • Kabeya FI, Pongrac P, Lange B, Faucon MP, van Elteren JT, Sala M, Selih VS, Vanden Eeckhoudt E, Verbruggen N (2018) Tolerance and accumulation of cobalt in three species of Haumaniastrum and the influence of copper. Environ Exp Bot 149:27–33

    Article  CAS  Google Scholar 

  • Khan MJ, Jones DL (2008) Chemical and organic immobilization treatments for reducing phytoavailability of heavy metals in copper-mine tailings. J Plant Nutr Soil Sci 171:908–916

    Article  CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122

    Article  Google Scholar 

  • Kosasih AN, Febrianto J, Sunarso J, Ju YH, Indraswati N, Ismadji S (2010) Sequestering of Cu(II) from aqueous solution using cassava peel (Manihot esculenta). J Hazard Mater 180:366–374

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28:215–225

    Article  CAS  Google Scholar 

  • Lange B, van der Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F, Meerts P, Pourret O, Verbruggen N, Faucon MP (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213:537–551

    Article  CAS  Google Scholar 

  • Li W (2016) The spent mushroom substrates composting and the application of compost to soil reforming. Dissertation, Beijing Institute of Technology. (in Chinese)

  • Liu B, Huang Q, Su Y, Wang M, Ma Y, Kelly RM (2018) Cobalt accumulation and antioxidant system in pakchois under chemical immobilization in fluvo-aquic soil. J Soils Sediments 18:669–679

    Article  CAS  Google Scholar 

  • Long XX, Yang XE, Ni WZ, Ye ZQ, He ZL, Calvert DV, Stoffella JP (2003) Assessing zinc thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Commun Soil Sci Plant Anal 34:1421–1434

    Article  CAS  Google Scholar 

  • Lu RK (1999) Analysis methods in soil agrochemistry. Chinese Agricultural Science and Technology Press, Beijing (in Chinese)

    Google Scholar 

  • Luo C, Liu C, Wang Y, Liu X, Li F, Zhang G, Li X (2011) Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J Hazard Mater 186:481–490

    Article  CAS  Google Scholar 

  • Majumdar SS, Das SK, Saha T, Panda GC, Bandyopadhyoy T, Guha AK (2008) Adsorption behavior of copper ions on Mucor rouxii biomass through microscopic and FTIR analysis. Colloids Surf B Biointerfaces 63:138–145

    Article  CAS  Google Scholar 

  • Marin B, Valladon M, Polve M, Monaco A (1997) Reproducibility testing of a sequential extraction scheme for the determination of trace metal speciation in a marine reference sediment by inductively coupled plasma-mass spectrometry. Anal Chim Acta 342:91–112

    Article  CAS  Google Scholar 

  • Marín-Benito JM, Rodríguez-Cruz MS, Andrades MS, Sánchez-Martín MJ (2012) Assessment of spent mushroom substrate as sorbent of fungicides: influence of sorbent and sorbate properties. J Environ Qual 41:814–822

    Article  CAS  Google Scholar 

  • Martins GC, Penido ES, Alvarenga IFS, Teodoro JC, Bianchi ML, Guilherme LRG (2018) Amending potential of organic and industrial by-products applied to heavy metal-rich mining soils. Ecotoxicol Environ Saf 162:581–590

    Article  CAS  Google Scholar 

  • Meier S, Curaqueo G, Khan N, Bolan N, Cea M, Eugenia GM, Cornejo P, Ok YS, Borie F (2017) Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil. J Soils Sediments 17:741–750

    Article  CAS  Google Scholar 

  • Melamed R, Cao X, Chen M, Ma LQ (2003) Field assessment of lead immobilization in a contaminated soil after phosphate application. Sci Total Environ 305:117–127

    Article  CAS  Google Scholar 

  • Meng J, Tao M, Wang L, Liu X, Xu J (2018) Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Sci Total Environ 633:300–307

    Article  CAS  Google Scholar 

  • Morrissey J, Baxter IR, Lee J, Li LT, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML (2009) The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21:3326–3338

    Article  CAS  Google Scholar 

  • Motamedi A, Jafarpour M, Askari-Khorasgani O, Pessarakli M (2016) Assessing the potential of pomegranate meal and potato waste as new organic amendments for vermicompost. Commun Soil Sci Plant Anal 47:1771–1781

    CAS  Google Scholar 

  • Mungasavalli DP, Viraraghavan T, Jin Y (2007) Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies. Colloids Surf A Physicochem Eng Asp 301:214–223

    Article  CAS  Google Scholar 

  • Palit S, Sharma A, Talukder G (1994) Effects of cobalt on plants. Bot Rev 60:149–181

    Article  Google Scholar 

  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  Google Scholar 

  • Reddy KR, Al-Hamdan AZ, Ala P (2011) Enhanced soil flushing for simultaneous removal of PAHs and heavy metals from industrial contaminated soil. J Hazard Toxic Radioact Waste 15:166–174

    Article  CAS  Google Scholar 

  • Redman AD, Macalady DL, Ahmann D (2002) Natural organic matter affects arsenic speciation and sorption onto hematite. Environ Sci Technol 36:2889–2896

    Article  CAS  Google Scholar 

  • Riedel T, Hennessy P, Iden SC, Koschinsky A (2015) Leaching of soil-derived major and trace elements in an arable topsoil after the addition of biochar. Eur J Soil Sci 66:823–834

    Article  CAS  Google Scholar 

  • Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J Environ Manag 90:1106–1116

    Article  CAS  Google Scholar 

  • Rosen V, Chen Y (2014) The influence of compost addition on heavy metal distribution between operationally defined geochemical fractions and on metal accumulation in plant. J Soils Sediments 14:713–720

    Article  CAS  Google Scholar 

  • Sauni R, Linna A, Oksa P, Nordman H, Tuppurainen M, Uitti J (2010) Cobalt asthma—a case series from a cobalt plant. Occup Med 60:301–306

    Article  CAS  Google Scholar 

  • Sethumadhavan P, Selvan VAM (2018) Effect of spent mushroom substrate and waste paper briquette on methane production from anaerobic digestion. J Environ Biol 39:269–276

    Article  CAS  Google Scholar 

  • Siebers N, Kruse J, Leinweber P (2013) Speciation of phosphorus and cadmium in a contaminated soil amended with bone char: sequential fractionations and XANES spectroscopy. Water Air Soil Pollut 224:1564–1576

    Article  CAS  Google Scholar 

  • Som MP, Lemée L, Amblès A (2009) Stability and maturity of a green waste and biowaste compost assessed on the basis of a molecular study using spectroscopy, thermal analysis, thermodesorption and thermochemolysis. Bioresour Technol 100:4404–4416

    Article  CAS  Google Scholar 

  • Teran-Baamonde J, Soto-Ferreiro RM, Carlosena A, Andrade JM, Prada D (2018) Determination of cadmium in sediments by diluted HCl extraction and isotope dilution ICP-MS. Talanta 186:272–278

    Article  CAS  Google Scholar 

  • Türkmen M, Budur D (2018) Heavy metal contaminations in edible wild mushroom species from Turkey’s Black Sea region. Food Chem 254:256–259

    Article  CAS  Google Scholar 

  • Wahab MA, Boubakri H, Jellali S, Jedidi N (2012) Characterization of ammonium retention processes onto cactus leaves fibers using FTIR, EDX and SEM analysis. J Hazard Mater 241–242:101–109

    Article  CAS  Google Scholar 

  • Wasay SA, Barrington S, Tokunaga S (2001) Organic acids for the in situ remediation of soils polluted by heavy metals: soil flushing in columns. Water Air Soil Pollut 127:301–314

    Article  CAS  Google Scholar 

  • Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94:99–107

    Article  CAS  Google Scholar 

  • Wu J, Zhang T, Chen C, Feng L, Su X, Zhou L, Chen Y, Xia A, Wang X (2018) Spent substrate of Ganodorma lucidum as a new bio-adsorbent for adsorption of three typical dyes. Bioresour Technol 266:134–138

    Article  CAS  Google Scholar 

  • Wyciszkiewicz M, Saeid A, Samoraj M, Chojnacka K (2017) Solid-state solubilization of bones by B. megaterium in spent mushroom substrate as a medium for a phosphate enriched substrate. J Chem Technol Biotechnol 92:1397–1405

    Article  CAS  Google Scholar 

  • Xian Y, Wu J, Yang G, Liao R, Zhang X, Peng H, Yu X, Shen F, Li L, Wang L (2018) Adsorption characteristics of Cd(II) in aqueous solutions using spent mushroom substrate biochars produced at different pyrolysis temperatures. RSC Adv 8:28002–28012

    Article  CAS  Google Scholar 

  • Yang X, Baligar VC, Martens DC, Clark RB (1995) Influx, transport, and accumulation of cadmium in plant species grown at different Cd2+ activities. J Environ Sci Heal B 30:569–583

    Article  Google Scholar 

  • Zhang P, Ryan JA (1999) Formation of chloropyromorphite from galena (PbS) in the presence of hydroxyapatite. Environ Sci Technol 33:618–624

    Article  CAS  Google Scholar 

  • Zhao B, Xu R, Ma F, Li Y, Wang L (2016) Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of Cd to maize in artificially contaminated loess soil. J Environ Manag 184:569–574

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Beijing Key Laboratory Construction Project, Beijing Municipal Education Commission Joint Construction Program (20160939023). We are grateful to Beijing Academy of Agriculture for providing facilities for the experiment. Special recognition is extended to Ryan M. Kelly of Rykell Scientific Editorial, LLC in Los Angeles, CA, for revising and proofreading the entire manuscript. Moreover, Borui Liu wants to thank Mr. Hsin-hung Chen for providing spiritual support in his life and research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Huang.

Additional information

Responsible editor: Elena Maestri

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Huang, Q., Su, Y. et al. Cobalt speciation and phytoavailability in fluvo-aquic soil under treatments of spent mushroom substrate from Pleurotus ostreatus. Environ Sci Pollut Res 26, 7486–7496 (2019). https://doi.org/10.1007/s11356-018-04080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-04080-3

Keywords

Navigation