Skip to main content

Advertisement

Log in

Palm oil mill effluent treatment and CO2 sequestration by using microalgae—sustainable strategies for environmental protection

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    Article  CAS  Google Scholar 

  • Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66

    Article  CAS  Google Scholar 

  • Acién, F. G., Fernández, J. M., & Molina-Grima, E. (2014). Biofuels from Algae. Biofuels from algae. Elsevier.

  • Afkar E, Ababna H, Fathi AA (2010) Toxicological response of the green alga Chlorella vulgaris, to some heavy metals. Am J Environ Sci 6(3):230–237

    Article  CAS  Google Scholar 

  • Ahmad AD, Salihon J, Tao DG (2015) Evaluation of CO2 sequestration by microalgae culture in palm oil mill effluent (POME) medium. Adv Mater Res 1113:311–316

    Article  Google Scholar 

  • Ahmad AL, Chong MF, Bhatia S, Ismail S (2006) Drinking water reclamation from palm oil mill effluent (POME) using membrane technology. Desalination 191(1–3):35–44

    Article  CAS  Google Scholar 

  • Ahmad AL, Chan CY (2009) Sustainability of palm oil industries: an innovative treatment via membrane technology. J Appl Sci 9(17):3074–3079

    Article  CAS  Google Scholar 

  • Ahmad AL, Yasin NM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15(1):584–593

    Article  CAS  Google Scholar 

  • Alias M, Tang TC (2005) Supply response of Malaysian palm oil producers: impact of interest rate variations. Oil Palm Ind Econ J 5(2):11–22

    Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  • Balat M (2009) Bioethanol as a vehicular fuel: a critical review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 31(911589934):1242–1255

    Article  CAS  Google Scholar 

  • Barsanti, L., & Gualtieri, P. (2006). Algae: anatomy, biochemistry, and biotechnology.

  • Becker, E. W. (1994). Microalgae: biotechnology and microbiology, Vol. 10, Cambridge University Press

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210

    Article  CAS  Google Scholar 

  • Bell JJ, Davy SK, Jones T, Taylor MW, Webster NS (2013) Could some coral reefs become sponge reefs as our climate changes? Glob Chang Biol 19(9):2613–2624

    Article  Google Scholar 

  • Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2012) Scenario analysis of nutrient removal from municipal wastewater by microalgal biofilms. Water (Switzerland) 4(2):460–473

    CAS  Google Scholar 

  • Borowitzka, M. A., & Borowitzka, L. J. (1988). Micro-algal biotechnology. Borowitzka, M. A. And L. J. Borowitzka.

  • Borowitzka M a (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70(1–3):313–321

    Article  CAS  Google Scholar 

  • Boyle NR, Morgan J a (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 3:4

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Brune DE, Lundquist TJ, Benemann JR (2009) Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil fuels and animal feeds. J Environ Eng 135(11):1136–1144

    Article  CAS  Google Scholar 

  • Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews.

  • Carvalho AP, Meireles L a, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506

    Article  CAS  Google Scholar 

  • Chaiklahan R, Chirasuwan N, Siangdung W, Paithoonrangsarid K, Bunnag B (2010) Cultivation of Spirulina platensis using pig wastewater in a semi-continuous process. J Microbiol Biotechnol 20(3):609–614

    Article  CAS  Google Scholar 

  • Chaiprasert, P. (2011). Biogas production from agricultural wastes in Thailand. Journal of Sustainable Energy & Environment, (Special Issue), 63–65. Retrieved from http://www.jseejournal.com/JSEE 2011/Special Issue/16. Biogas production_Aj. Pawinee_p. 63-65.pdf

  • Chen CY, Chang HW, Kao PC, Pan JL, Chang JS (2012) Biosorption of cadmium by CO2-fixing microalga Scenedesmus obliquus CNW-N. Bioresour Technol 105:74–80

    Article  CAS  Google Scholar 

  • Cheunbarn S, Peerapornpisal Y (2010) Cultivation of Spirulina platensis using anaerobically swine wastewater treatment effluent. Int J Agric Biol 12(4):586–590

    CAS  Google Scholar 

  • Chevalier P, Proulx D, Lessard P, Vincent WF, De La Noüe J (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol 12(2):105–112

    Article  CAS  Google Scholar 

  • Chi Z, Zheng Y, Jiang A, Chen S (2011) Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl Biochem Biotechnol 165(2):442–453

    Article  CAS  Google Scholar 

  • Chin MJ, Poh PE, Tey BT, Chan ES, Chin KL (2013) Biogas from palm oil mill effluent (POME): opportunities and challenges from Malaysia’s perspective. Renew Sust Energ Rev 26:717–726

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100(2):833–838

    Article  CAS  Google Scholar 

  • Cho S, Luong TT, Lee D, Oh YK, Lee T (2011) Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour Technol 102(18):8639–8645

    Article  CAS  Google Scholar 

  • Cho S, Lee N, Park S, Yu J, Luong TT, Oh YK, Lee T (2013) Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresour Technol 131:515–520

    Article  CAS  Google Scholar 

  • Chong M-L, Abdul Rahman NA, Rahim RA, Aziz SA, Shirai Y, Hassan MA (2009) Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology. Int J Hydrog Energy 34(17):7475–7482

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29(6):686–702

    Article  CAS  Google Scholar 

  • Chuntapa B, Powtongsook S, Menasveta P (2003) Water quality control using Spirulina platensis in shrimp culture tanks. Aquaculture 220:355–366

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif 48(6):1146–1151

    Article  CAS  Google Scholar 

  • Costa JAV, de Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102(1):2–9

    Article  CAS  Google Scholar 

  • Craggs RJ, Zwart A, Nagels JW, Davies-Colley RJ (2004) Modelling sunlight disinfection in a high rate pond. Ecol Eng 22(2):113–122

    Article  Google Scholar 

  • Cuaresma M, Janssen M, Vílchez C, Wijffels RH (2011) Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresour Technol 102(8):5129–5137

    Article  CAS  Google Scholar 

  • Dalrymple OK, Halfhide T, Udom I, Gilles B, Wolan J, Zhang Q, Ergas S (2013) Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquatic Biosystems 9(1):2

    Article  Google Scholar 

  • Dayananda C, Sarada R, Rani MU, Shamala TR, Ravishankar GA (2007) Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy 31(1):87–93

    Article  CAS  Google Scholar 

  • Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92(2):89–94

    Article  CAS  Google Scholar 

  • Del Campo JA, Moreno J, Rodríguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76(1):51–59

    Article  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101(6):1611–1627

    Article  CAS  Google Scholar 

  • Ding, G. T., Yaakob, Z., Takriff, M. S., Salihon, J., & Abd Rahaman, M. S. (2016). Biomass production and nutrients removal by a newly-isolated microalgal strain Chlamydomonas sp in palm oil mill effluent (POME). International Journal of Hydrogen Energy

  • Ebeling JM, Timmons MB, Bisogni JJ (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 257(1):346–358

    Article  Google Scholar 

  • Fernandez E, Galvan A (2007) Inorganic nitrogen assimilation in Chlamydomonas. J Exp Bot 58(9):2279–2287

    Article  CAS  Google Scholar 

  • Ferrell, J., & Sarisky-Reed, V. (2010). National algal biofuels technology roadmap. (No. DOE/EE--0332). EERE Publication and Product Library

  • Frac M, Jezierska-tys S, Tys J (2010) Microalgae for biofuels production and environmental applications: a review. J Biotechnol 9(54):9227–9236

    Google Scholar 

  • Gallagher BJ (2011) The economics of producing biodiesel from algae. Renew Energy 36(1):158–162

    Article  CAS  Google Scholar 

  • Garcia J, Mujeriego R, Hernandez-Marine M (2000) High rate algal pond operating strategies for urban wastewater nitrogen removal. Appl Phycol 12:331–339

    Article  CAS  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J Royal Soc Interface/Royal Soc 7(46):703–726

    Article  CAS  Google Scholar 

  • Grönlund E, Klang A, Falk S, Hanæus J (2004) Sustainability of wastewater treatment with microalgae in cold climate, evaluated with emergy and socio-ecological principles. Ecol Eng 22(3):155–174

    Article  Google Scholar 

  • Gross M, Henry W, Michael C, Wen Z (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol 150:195–201

    Article  CAS  Google Scholar 

  • Habib MAB, Yusoff FM, Phang SM, Kamarudin MS (1998) Nutrients of agroindustrial effluents in Malaysia. Asian Fish Sci 11:279–286

    Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85(2):199–203

    CAS  Google Scholar 

  • Houser JB, Venable ME, Sakamachi Y, Hambourger MS, Herrin J, Tuberty SR (2014) Wastewater remediation using algae grown on a substrate for biomass and biofuel production. J Environ Prot 05(10):895–904

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87(1):38–46

    Article  CAS  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27(8):631–635

    Article  CAS  Google Scholar 

  • Ip PF, Chen F (2005) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40(2):733–738

    Article  CAS  Google Scholar 

  • Jacobson K, Gopinath R, Meher LC, Dalai AK (2008) Solid acid catalyzed biodiesel production from waste cooking oil. Appl Catal B Environ 85(1–2):86–91

    Article  CAS  Google Scholar 

  • Ji M-K, Yun H-S, Park Y-T, Kabra AN, Oh I-H, Choi J (2015) Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. J Environ Manag 159:115–120

    Article  CAS  Google Scholar 

  • Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128(X):359–364

    Article  CAS  Google Scholar 

  • K. Wang Lawrence, Yung-TSe, H., Howard, H. Lo, Constatine, Y. (2006). Bakery waste treatment. In: Handbook of Industrial and Hazardous Wastes Treatment (pp. 1093–1111).

  • Kaku K (2011) Global warming and climate change of Asian countries including Japanese domestic greenhouse gas (GHG) reduction in the field of poultry and swine industries. Procedia Eng 8:511–514

    Article  CAS  Google Scholar 

  • Kamarudin KF, Yaakob Z, Rajkumar R, Takriff MS, Tasirin SM (2013) Bioremediation of palm oil mill effluents (POME) using Scenedesmus dimorphus and Chlorella vulgaris. Adv Sci Lett 19(10):2914–2918

    Article  CAS  Google Scholar 

  • Kamarudin KF, Tao DG, Yaakob Z, Takriff MS, Rahaman MSA, Salihon J (2015) A review on wastewater treatment and microalgal by-product production with a prospect of palm oil mill effluent (POME) utilization for algae. Der Pharma Chemica 7(7):73–89

    CAS  Google Scholar 

  • Kamyab H, Din MFM, Keyvanfar A, Majid MZA, Talaiekhozani A, Shafaghat A et al (2015) Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia 75:2400–2408

    Article  CAS  Google Scholar 

  • Khan S, Rashmi, Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev 13(9):2361–2372

    Article  CAS  Google Scholar 

  • Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160(1):9–18

    Article  CAS  Google Scholar 

  • Kumar D, Gaur JP (2011) Metal biosorption by two cyanobacterial mats in relation to pH, biomass concentration, pretreatment and reuse. Bioresour Technol 102(3):2529–2535

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT (2011) Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win–win strategies toward better environmental protection. Biotechnol Adv 29(1):124–141

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenh Gas Control 10:456–469

    Article  CAS  Google Scholar 

  • Larsdotter K (2006) Wastewater treatment with microalgae—a literature review. Vatten 62:31–38

    CAS  Google Scholar 

  • Latif Ahmad A, Ismail S, Bhatia S (2003) Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination 157(1–3):87–95

    Article  Google Scholar 

  • Laurance WF, Koh LP, Butler R, Sodhi NS, Bradshaw CJ a, Neidel JD et al (2010) Improving the performance of the roundtable on sustainable palm oil for nature conservation. Conserv Biol 24(2):377–381

    Article  Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13(4):307–315

    Article  Google Scholar 

  • Levine RB, Costanza-Robinson MS, Spatafora GA (2011) Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass Bioenergy 35(1):40–49

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008a) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wu N, Dubois-Calero N (2008b) Biofuels from microalgae. Biotechnol Prog 24(4):815–820. doi:10.1021/bp.070371k

    CAS  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrate municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102(8):5138–5144

    Article  CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31(7):1043–1049

    Article  CAS  Google Scholar 

  • Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101(19):7314–7322

    Article  CAS  Google Scholar 

  • Lopez-Valero I, Gomez-Lorente C, Boistelle R (1992) Effects of sodium and ammonium ions on occurrence, evolution and crystallinity of calcium phosphates. J Cryst Growth 121(3):297–304

    Article  CAS  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18(4):160–167

    Article  CAS  Google Scholar 

  • Mahlia TMI, Abdulmuin MZ, Alamsyah TMI, Mukhlishien D (2001) An alternative energy source from palm wastes industry for Malaysia and Indonesia. Energy Convers Manag 42(18):2109–2118

    Article  CAS  Google Scholar 

  • Maity JP, Bundschuh J, Chen C-Y, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives—a mini review. Energy 78:104–113

    Article  CAS  Google Scholar 

  • Malaysian Palm Oil Board (MPOB) 2014. http://www.mpob.gov.my/palm-info/environment/520-achievements

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15(4):377–390

    Article  CAS  Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88(10):3389–3401

    Article  CAS  Google Scholar 

  • Martınez ME, Sánchez S, Jimenez JM, El Yousfi F, Munoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73(3):263–272

    Article  Google Scholar 

  • Masojidek, J., & Torzillo, G. (2013). Mass cultivation of freshwater microalgae. In Reference Module in Earth Systems and Environmental Sciences.

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25(3):113–152

    Article  CAS  Google Scholar 

  • Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226(5):1075–1086

    Article  CAS  Google Scholar 

  • Merrett MJ, Lord JM (1973) Glycollate formation and metabolism by algae. New Phytol 72(4):751–767

    Article  CAS  Google Scholar 

  • Metcalf E, Eddy H (2003) Wastewater engineering: treatment and reuse. In: Techobanoglous G, Burton FL, Stensel HD (eds) Wastewater engineering, treatment, disposal and reuse, 4th edn. Tata McGraw-Hill Publishing Company Limited, New Delhi, India

    Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    Article  CAS  Google Scholar 

  • Mohammed RR, Chong MF (2014) Treatment and decolorization of biologically treated palm oil mill effluent (POME) using banana peel as novel biosorbent. J Environ Manag 132:237–249

    Article  CAS  Google Scholar 

  • Mohan SV, Devi MP, Mohanakrishna G, Amarnath N, Babu ML, Sarma PN (2011) Potential of mixed microalgae to harness biodiesel from ecological water-bodies with simultaneous treatment. Bioresour Technol 102(2):1109–1117

    Article  CAS  Google Scholar 

  • Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131

    Article  CAS  Google Scholar 

  • Muhs JD (2000) Hybrid solar lighting doubles the efficiency and affordability of solar energy in commercial buildings. CADDET Energy Efficiency Newsletter 4:6–9

    Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815

    Article  CAS  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102(1):57–70

    Article  CAS  Google Scholar 

  • Nandeshwar S, Satpute G (2014) Green technical methods for treatment of waste water using microalgae and its application in the management of natural water resources: a review. Current World Environment 9(3):837–842

    Article  Google Scholar 

  • Noike T, Goo IS, Matsumoto H, Miyahara T (2004) Development of a new type of anaerobic digestion process equipped with the function of nitrogen removal. Water Sci Technol 49(5–6):173–179

    CAS  Google Scholar 

  • Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284

    Article  CAS  Google Scholar 

  • Oliver R, Ganf G (2002) Freshwater blooms. Ecol Cyanobacteria:149–194

  • Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12(3):553–556

    Article  CAS  Google Scholar 

  • Órpez R, Martínez ME, Hodaifa G, El Yousfi F, Jbari N, Sánchez S (2009) Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination 246(1–3):625–630

    Article  CAS  Google Scholar 

  • Park J, Jin H-F, Lim B-R, Park K-Y, Lee K (2010) Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour Technol 101(22):8649–8657

    Article  CAS  Google Scholar 

  • Pedroni P, Davison J, Beckert H, Bergman P, Benemann J (2001) A proposal to establish an international network on biofixation of CO2 and greenhouse gas abatement with microalgae. Journal of Energy and Environmental Research 1(1):136–150

    Google Scholar 

  • Perez-Garcia O, Bashan Y, Esther Puente M (2011) Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. J Phycol 47(1):190–199

    Article  Google Scholar 

  • Phukan MM, Chutia RS, Konwar BK, Kataki R (2011) Microalgae Chlorella as a potential bio-energy feedstock. Appl Energy 88(10):3307–3312

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  Google Scholar 

  • Poh PE, Chong MF (2009) Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Bioresour Technol 100(1):1–9

    Article  CAS  Google Scholar 

  • Rajkumar R, Takriff MS (2015) Nutrient removal from anaerobically treated palm oil mill effluent by Spirulina platensis and Scenedesmus dimorphus. Pharm Lett 7(7):416–421

    CAS  Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci U S A 104(24):10288–10293

    Article  CAS  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424

    Article  CAS  Google Scholar 

  • Richmond, A. (2004). Principles for attaining maximal microalgal productivity in photobioreactors: an overview. In Hydrobiologia (vol. 512, pp. 33–37)

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  • Rupani PF, Singh RP, Ibrahim MH, Esa N (2010) Review of current palm oil mill effluent (POME) treatment methods: vermicomposting as a sustainable practice. World Appl Sci J 11(1):70–81

    CAS  Google Scholar 

  • Samhan, S., & PWA, P. W. A. (2008). Obstacles to enhance groundwater aquifer by reclaimed water using artificial recharge as affreuse option in West Bank/Palestine.

  • Sankaran S, Khanal SK, Jasti N, Jin B, Pometto AL, Van Leeuwen JH (2010) Use of filamentous fungi for wastewater treatment and production of high value fungal byproducts: a review. Crit Rev Environ Sci Technol 40(5):400–449

    Article  CAS  Google Scholar 

  • Sathish A, Sims RC (2012) Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresour Technol 118:643–647

    Article  CAS  Google Scholar 

  • Sato T, Usui S, Tsuchiya Y, Kondo Y (2006) Invention of outdoor closed type photobioreactor for microalgae. Energy Convers Manag 47(6):791–799

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1(1):20–43

    Article  Google Scholar 

  • Serejo ML, Posadas E, Boncz MA, Blanco S, García-Encina P, Muñoz R (2015) Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. Environ Sci Technol 49(5):3228–3236

    Article  CAS  Google Scholar 

  • Skjånes K, Knutsen G, Källqvist T, Lindblad P (2008) H2 production from marine and freshwater species of green algae during sulfur deprivation and considerations for bioreactor design. Int J Hydrog Energy 33(2):511–521

    Article  CAS  Google Scholar 

  • Song D, Fu J, Shi D (2008) Exploitation of oil-bearing microalgae for biodiesel. Chin J Biotechnol 24(3):341–348

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  Google Scholar 

  • Stephens, E., Ross, I. L., Mussgnug, J. H., Wagner, L. D., Borowitzka, M. A., Posten, C., … Hankamer, B. (2010). Future prospects of microalgal biofuel production systems. Trends in Plant Science.

  • Sturm BS, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy 88(10):3499–3506

    Article  CAS  Google Scholar 

  • Su Y, Mennerich A, Urban B (2012) Coupled nutrient removal and biomass production with mixed algal culture: impact of biotic and abiotic factors. Bioresour Technol 118:469–476

    Article  CAS  Google Scholar 

  • Suali, E., Sarbatly, R., Muhamad Shaleh, S.R. 2012. Characterisation of local Chlorella sp., Toward biofuel production. In: International Conference on Applied Energy, Suzhou, China, pp. 2965-2970.

  • Subramaniam V, Ma AN, Choo YM, Sulaiman NMN (2008) Environmental performance of the milling process of Malaysian palm oil using the life cycle assessment approach. Am J Environ Sci 4:310–315

    Article  CAS  Google Scholar 

  • Tan X, Chu H, Zhang Y, Yang L, Zhao F, Zhou X (2014) Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor. Bioresour Technol 170:538–548

    Article  CAS  Google Scholar 

  • Tong SL, Jaafar AB (2004) Waste to energy: methane recovery from anaerobic digestion of palm oil mill effluent. Energy Smart 4:1–8

    Google Scholar 

  • Torres E, Mera R, Herrero C, Abalde J (2014) Isotherm studies for the determination of Cd (II) ions removal capacity in living biomass of a microalga with high tolerance to cadmium toxicity. Environ Sci Pollut Res 21(22):12616–12628

    Article  CAS  Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1(1):143–162

    Article  CAS  Google Scholar 

  • Wang B, Lan CQ (2011) Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour Technol 102(10):5639–5644

    Article  CAS  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y et al (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162(4):1174–1186

    Article  CAS  Google Scholar 

  • White, D. A., Pagarette, A., Rooks, P., & Ali, S. T. (2013). The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. Journal of Applied Phycology, 1–13.

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84(1):81–91

    Article  CAS  Google Scholar 

  • Williams PJLB, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3(5):554

    Article  CAS  Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135(11):1115–1122

    Article  CAS  Google Scholar 

  • Wood BJB, Grimson PHK, German JB, Turner M (1999) Photoheterotrophy in the production of phytoplankton organisms. Prog Ind Microbiol 35(C):175–183

    Article  Google Scholar 

  • Wu TY, Mohammad AW, Jahim JM, Anuar N (2010) Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. J Environ Manag 91(7):1467–1490

    Article  CAS  Google Scholar 

  • Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86(10):1097–1107

    Article  CAS  Google Scholar 

  • Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res-Thessaloniki 21(1):1–10

    Article  Google Scholar 

  • Yacob S, Ali Hassan M, Shirai Y, Wakisaka M, Subash S (2006) Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Sci Total Environ 366(1):187–196

    Article  CAS  Google Scholar 

  • Yin, N.C., Yaakob, Z., Ali, E., Min, A.M., Wa, N.S. 2011. Characterization of various microalgae for biodiesel fuel production. Journal of Materials Science and Engineering, A(1), 80–86

  • Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 101(Suppl 1):S71–S74

    Article  CAS  Google Scholar 

  • Yuan X, Kumar A, Sahu AK, Ergas SJ (2011) Impact of ammonia concentration on Spirulina platensis growth in an airlift photobioreactor. Bioresour Technol 102(3):3234–3239

    Article  CAS  Google Scholar 

  • Yule CM (2010) Loss of biodiversity and ecosystem functioning in Indo-Malayan peat swamp forests. Biodivers Conserv 19(2):393–409

    Article  Google Scholar 

  • Zainal A, Yaakob Z, Takriff MS, Rajkumar R, Ghani JA (2012) Phycoremediation in anaerobically digested palm oil mill effluent using cyanobacterium, Spirulina platensis. J Biobased Mater Bioenergy 6(xx):704–709

    Article  CAS  Google Scholar 

  • Zhang E, Wang B, Wang Q, Zhang S, Zhao B (2008) Ammonia–nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresour Technol 99(9):3787–3793

    Article  CAS  Google Scholar 

  • Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214(4):552–561

    Article  CAS  Google Scholar 

  • Zhang L, Jahng D (2010) Enhanced anaerobic digestion of piggery wastewater by ammonia stripping: effects of alkali types. J Hazard Mater 182(1–3):536–543

    Article  CAS  Google Scholar 

  • Zhao Y, Wang J, Zhang H, Yan C, Zhang Y (2013) Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process. Bioresour Technol 136:461–468

    Article  CAS  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Zhang H, Ma X et al (2012a) Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energy 98:433–440

    Article  CAS  Google Scholar 

  • Zhou, W., Min, M., Li, Y., Hu, B., Ma, X., Cheng, Y., … Ruan, R. (2012b). A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour Technol (Vol. 110).

  • Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, Yuan Z (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47(13):4294–4302

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding given by Yayasan Sime Darby (UKM-YSD Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harizah Bajunaid Hariz.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariz, H.B., Takriff, M.S. Palm oil mill effluent treatment and CO2 sequestration by using microalgae—sustainable strategies for environmental protection. Environ Sci Pollut Res 24, 20209–20240 (2017). https://doi.org/10.1007/s11356-017-9742-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9742-6

Keywords

Navigation