Skip to main content
Log in

Monitoring and modeling 4-chlorophenol biodegradation kinetics by phenol-acclimated activated sludge by using open respirometry

  • Advances in Environmental Biotechnology and Engineering 2016
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze the mechanisms, stoichiometry, and stability of 4-chlorophenol (4CP) biodegradation kinetics by phenol-acclimated activated sludge using open respirometry. While the removal of 4CP was higher than 98%, the removal of chemical oxygen demand (COD) ranged between 69 and 79% due to the accumulation of an intermediate metabolite. The value obtained from respirometric profiles for the stoichiometric ratio of O2 to 4CP (YO2/4CP) was 1.95 ± 0.04 mol of oxygen consumed per mol of 4CP removed. This YO2/4CP value reflected the action of the oxygenases responsible for the first steps of the aerobic oxidation of 4CP. The 4CP degradation activity decreased noticeably when successive pulses of 4CP were added to the respirometer. A mathematical model was developed to represent the aerobic biodegradation of 4CP. The fitted model adequately predicted the oxygen consumption rate, total phenols, and soluble COD concentrations as a function of time. The results presented could help to predict the dynamic of biodegradation of chlorophenols in a biological wastewater treatment system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aktas O (2012) Effect of S0/X0 ratio and acclimation on respirometry of activated sludge in the cometabolic biodegradation of phenolic componuds. Bioresour Technol 111:98–104. doi:10.1016/j.biortech.2012.02.027

    Article  CAS  Google Scholar 

  • Arora PK, Bae H (2014) Integration of bioinformatics to biodegradation. Biological Procedures Online 16:8–8. doi:10.1186/1480-9222-16-8

    Article  CAS  Google Scholar 

  • Bali U, Şengül F (2002) Performance of a fed-batch reactor treating a wastewater containing 4-chlorophenol. Process Biochem 37:1317–1323. doi:10.1016/S0032-9592(02)00022-5

    Article  CAS  Google Scholar 

  • Beltrame P, Beltrame PL, Carniti P (1984) Inhibiting action of chloro- and nitro-phenols on biodegradation of phenol: a structure-toxicity relationship. Chemosphere 13:3–9. doi:10.1016/0045-6535(84)90003-1

    Article  CAS  Google Scholar 

  • Beltrán FJ (2004) Ozone reaction kinetics for water and wastewater systems. Lewis Publishers. CRC Press Co., Boca Raton, Florida

    Google Scholar 

  • Buitrón G, Schoeb M-E, Moreno J (2003) Automated sequencing batch bioreactor under extreme peaks of 4-chlorophenol. Water Sci Technol 47:175–181

    Article  Google Scholar 

  • Çatalkaya EÇ, Bali U, Şengül F (2003) Photochemical degradation and mineralization of 4- chlorophenol. Environ Sci Pollut R 10:113–120. doi:10.1065/espr2002.10.135

    Article  CAS  Google Scholar 

  • Farrell A, Quilty B (1999) Degradation of mono-chlorophenols by a mixed microbial community via a meta-cleavage pathway. Biodegradation 10:353–362. doi:10.1023/a:1008323811433

    Article  CAS  Google Scholar 

  • Ferro Orozco AM, Contreras EM, Zaritzky NE (2013) Biodegradation of bisphenol-a (BPA) in activated sludge batch reactors: analysis of the acclimation process. International Biodeterioration & Biodegradation 85:392–399. doi:10.1016/j.ibiod.2013.09.005

    Article  CAS  Google Scholar 

  • Ferro Orozco AM, Contreras EM, Zaritzky NE (2015) Simultaneous biodegradation of bisphenol a and a biogenic substrate in semi-continuous activated sludge reactors. Biodegradation 26:183–195. doi:10.1007/s10532-015-9726-5

    Article  CAS  Google Scholar 

  • Ferro Orozco AM, Contreras EM, Zaritzky NE (2016a) Biodegradation of bisphenol a and its metabolic intermediates by activated sludge: stoichiometry and kinetics analysis. International Biodeterioration & Biodegradation 106:1–9. doi:10.1016/j.ibiod.2015.10.003

    Article  CAS  Google Scholar 

  • Ferro Orozco AM, Contreras EM, Zaritzky NE (2016b) Monitoring the biodegradability of bisphenol A and its metabolic intermediates by manometric respirometry tests. Biodegradation 27(4):209–221. doi:10.1007/s10532-016-9767-4

    Article  CAS  Google Scholar 

  • Field JA, Sierra-Alvarez R (2007) Microbial degradation of chlorinated phenols. Rev Environ Sci Biotechnol 7:211–241. doi:10.1007/s11157-007-9124-5

    Article  CAS  Google Scholar 

  • Frey PA, Hegeman AD (2007) Enzymatic reaction mechanisms. Oxford University Press, Inc. new York

    Google Scholar 

  • Gao J, Ellis LBM, Wackett LP (2010) The University of Minnesota biocatalysis/biodegradation database: improving public access. Nucleic Acids Res 38(Database issue):D488–D491. doi:10.1093/nar/gkp771

  • Greenberg AE, Clesceri LS, Eaton AD (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association (APHA), Washington DC

    Google Scholar 

  • Grén I, Hupert-Kocurek K, Osiecka M, Guzik U, Wojcieszyńska D (2012) Toxicity of 4-chlorophenol under cometabolic conditions depending on the bacterial cell wall structure? Architecture, civil engineering. Environment (ACEE) 3:101–108

    Google Scholar 

  • Hao OJ, Kim MH, Seagren EA, Kim H (2002) Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere 46(6):797–807. doi:10.1016/S0045-6535(01)00182-5

    Article  CAS  Google Scholar 

  • Jiang Y, Ren N, Cai X, Wu D, Qiao L, Lin S (2008) Biodegradation of phenol and 4-Chlorophenol by the mutant strain CTM 2. Chin J Chem Eng 16:796–800. doi:10.1016/S1004-9541(08)60158-5

    Article  CAS  Google Scholar 

  • Kargi F, Konya I (2006) COD, para-chlorophenol and toxicity removal from para-chlorophenol containing synthetic wastewater in an activated sludge unit. J Hazard Mater 132:226–231. doi:10.1016/j.jhazmat.2005.09.040

    Article  CAS  Google Scholar 

  • Kim JH, Oh KK, Lee ST, Kim S-W, Hong SI (2002) Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor. Process Biochem 37:1367–1373. doi:10.1016/S0032-9592(02)00007-9

    Article  CAS  Google Scholar 

  • Konya I, Eker S, Kargi F (2007) Mathematical modelling of 4-chlorophenol inhibition on COD and 4-chlorophenol removals in an activated sludge unit. J Hazard Mater 143(1–2):233–239. doi:10.1016/j.jhazmat.2006.09.015

    Article  CAS  Google Scholar 

  • Lim JW, Tan JZ, Seng CE (2013) Performance of phenol-acclimated activated sludge in the presence of various phenolic compounds. App Water Sci 3:515–525. doi:10.1007/s13201-013-0099-9

    Article  CAS  Google Scholar 

  • Liu D, Pacepavicius G (1990) A systematic study of the aerobic and anaerobic biodegradation of 18 chlorophenols and 3 cresols. Toxicity Assessment 5:367–387. doi:10.1002/tox.2540050405

    Article  CAS  Google Scholar 

  • Lobo CC, Bertola NC, Contreras EM (2014) Error propagation in open respirometric assays. Brazilian J Chem Eng 31:303–312. doi:10.1590/0104-6632.20140312s00002659

    Article  Google Scholar 

  • Lobo CC, Bertola NC, Contreras EM (2013) Stoichiometry and kinetic of the aerobic oxidation of phenolic compounds by activated sludge. Bioresour Technol 136:58–65. doi:10.1016/j.biortech.2013.02.079

    Article  CAS  Google Scholar 

  • Lobo CC, Bertola NC, Contreras EM (2016) Inhibition kinetics during the oxidation of binary mixtures of phenol with catechol, resorcinol and hydroquinone by phenol acclimated activated sludge. Braz J Chem Eng 33(1):59–71. doi:10.1590/0104-6632.20160331s20150173

    Article  CAS  Google Scholar 

  • Mendes P (1993) GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems computer applications in the biosciences: CABIOS 9:563-571

  • Mendes P, Kell D (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14:869–888

    Article  CAS  Google Scholar 

  • Monsalvo VM, Mohedano AF, Casas JA, Rodríguez JJ (2009) Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures. Bioresour Technol 100:4572–4578. doi:10.1016/j.biortech.2009.04.044

    Article  CAS  Google Scholar 

  • Moreno-Andrade I, Buitrón G (2004) Variation of the microbial activity during the acclimation phase of SBR system degrading 4-chlorophenol. Water Sci Technol 50:251–258

    Article  CAS  Google Scholar 

  • Nadavala SK, Swayampakula K, Boddu VM, Abburi K (2009) Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads. J Hazard Mater 162:482–489. doi:10.1016/j.jhazmat.2008.05.070

    Article  CAS  Google Scholar 

  • Nordin K, Unell M, Jansson JK (2005) Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 71:6538–6544

    Article  CAS  Google Scholar 

  • Nuhoglu A, Yalcin B (2005) Modelling of phenol removal in a batch reactor. Process Biochem 40:1233–1239. doi:10.1016/j.procbio.2004.04.003

    Article  CAS  Google Scholar 

  • Olaniran AO, Igbinosa EO (2011) Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere 83:1297–1306. doi:10.1016/j.chemosphere.2011.04.009

    Article  CAS  Google Scholar 

  • Orhon D, Cokgor EU, Insel G, Karahan O, Katipoglu T (2009) Validity of Monod kinetics at different sludge ages - peptone biodegradation under aerobic conditions. Bioresour Technol 100:5678–5686. doi:10.1016/j.biortech.2009.06.046

    Article  CAS  Google Scholar 

  • Paca J, Kosteckova A, Pacova L, Prell A, Halecky M, Paca J Jr, Stiborova M, Kozliak E, Soccol CR (2010) Respirometry kinetics of phenol oxidation by Comamonas testosteroni Pb50 under various conditions of nutritional stress. Braz Arch Biol Technol 53(6):1519–1528. doi:10.1590/S1516-89132010000600030

    Article  CAS  Google Scholar 

  • Ricco G, Tomei MC, Ramadori R, Laera G (2004) Toxicity assessment of common xenobiotic compounds on municipal activated sludge: comparison between respirometry and Microtox®. Water Res 38:2103–2110. doi:10.1016/j.watres.2004.01.020

    Article  CAS  Google Scholar 

  • Ros M (1993) Respirometry of Activated Sludge. Technomic Publishing Co., Inc. Basilea, Switzerland

  • Rueda-Márquez JJ, Pintado-Herrera MG, Martín-Díaz ML, Acevedo-Merino A, Manzano MA (2015) Combined AOPs for potential wastewater reuse or safe discharge based on multi-barrier treatment (microfiltration-H2O2/UV-catalytic wet peroxide oxidation). Chem Eng J 270:80–90. doi:10.1016/j.cej.2015.02.011

    Article  CAS  Google Scholar 

  • Sahinkaya E, Dilek FB (2005) Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge—evaluation of biokinetic coefficients. Environ Res 99:243–252. doi:10.1016/j.envres.2004.11.005

    Article  CAS  Google Scholar 

  • Sanchis S, Polo A, Tobajas M, Rodriguez J, Mohedano A (2014) Strategies to evaluate biodegradability: application to chlorinated herbicides. Environ. Sci. Pollut. R 21(16):9445–9452. doi:10.1007/s11356-013-2130-y

    Article  CAS  Google Scholar 

  • Uysal A, Turkman A (2007) Biodegradation of 4-CP in an activated sludge reactor: effects of biosurfactant and the sludge age. J Hazar Mater 148:151–157. doi:10.1016/j.jhazmat.2007.02.020

    Article  CAS  Google Scholar 

  • Verweij W. Equilibria and constants in CHEAQS: selection criteria, sources and assumptions. Version 8 (April 2009). From: http://home.tiscali.nl/cheaqs/db_v8.pdf

  • Wang Q, Li Y, Li J, Wang Y, Wang C, Wang P (2015) Experimental and kinetic study on the cometabolic biodegradation of phenol and 4-chlorophenol by psychrotrophic Pseudomonas putida LY1. Environ. Sci. Pollut. R 22(1):565–573. doi:10.1007/s11356-014-3374-x

    Article  CAS  Google Scholar 

  • Westmeier F, Rehm HJ (1987) Degradation of 4-chlorophenol in municipal wastewater by adsorptiv immobilized Aicaligenes sp. A 7-2. Appl Environ Microbiol 26:78–83. doi:10.1007/bf00282152

    Article  CAS  Google Scholar 

  • Ye FX, Shen DS (2004) Acclimation of anaerobic sludge degrading chlorophenols and the biodegradation kinetics during acclimation period. Chemosphere 54:1573–1580. doi:10.1016/j.chemosphere.2003.08.019

    Article  CAS  Google Scholar 

  • Zhang L, Bandy B, Davison AJ (1996) Effects of metals, ligands and antioxidants on the reaction of oxygen with 1, 2, 4-benzenetriol. Free Radic Biol Med 20:495–505

    Article  CAS  Google Scholar 

  • Zhao J, Chen X, Bao L, Bao Z, He Y, Zhang Y, Li J (2016) Correlation between microbial diversity and toxicity of sludge treating synthetic wastewater containing 4-chlorophenol in sequencing batch reactors. Chemosphere 153:138–145. doi:10.1016/j.chemosphere.2016.01.086

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), by Universidad Nacional de la Plata (UNLP), and by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cintia C. Lobo.

Additional information

Responsible editor: Gerald Thouand

Electronic supplementary material

ESM 1

(DOCX 1064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobo, C.C., Bertola, N.C., Contreras, E.M. et al. Monitoring and modeling 4-chlorophenol biodegradation kinetics by phenol-acclimated activated sludge by using open respirometry. Environ Sci Pollut Res 25, 21272–21285 (2018). https://doi.org/10.1007/s11356-017-9735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9735-5

Keywords

Navigation