Skip to main content

Advertisement

Log in

High copper concentrations produce genotoxicity and cytotoxicity in bovine cumulus cells

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the cytotoxic and genotoxic effects of high copper (Cu) concentrations on bovine cumulus cells (CCs) cultured in vitro. We evaluated the effect of 0, 120, 240, and 360 μg/dL Cu added to in vitro maturation (IVM) medium on CC viability assessed by the trypan blue (TB)–fluorescein diacetate (FDA) and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, apoptosis, and DNA damage. Differences in cell viability assessed by TB–FDA were not significant among CC treated with 0, 120, 240, and 360 μg/dL Cu. However, mitochondrial activity assessed by MTT was lower in CC cultured with 120, 240, and 360 μg/dL Cu as compared with the control (p < 0.01). Percentages of apoptotic cells were higher when CCs were treated with 120, 240, and 360 μg/dL Cu (p < 0.05) due to higher frequencies of late apoptotic cells (p < 0.05). The frequency of live cells diminished in a dose-dependent manner when Cu was added to the culture medium. Whereas genetic damage index (GDI) increased significantly in CC cultured in the presence of 240 and 360 μg/dL Cu (p ˂ 0.05), DNA damage increased at all Cu concentrations tested (p ˂ 0.05). These results indicate that Cu induces cytotoxic and genotoxic effects in bovine CC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alimba CG, Dhillon V, Bakare AA, Fenech (2016) Genotoxicity and cytotoxicity of chromium, copper, manganese and lead, and their mixture in WIL2-NS human B lymphoblastoid cells is enhanced by folate depletion. Mutat Res Genet Toxicol Environ Mutagen 98–799:35–47. doi:10.1016/j.mrgentox.2016.02.002

    Article  Google Scholar 

  • Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M (1991) Copper-independent damage to the bases in DNA in the presence of hydrogenperoxide. Biochem J 273:601–604

    Article  CAS  Google Scholar 

  • Aston NS, Watt N, Morton IE, Tanner MS, Evans GS (2000) Copper toxicity affects proliferation and viability of human hepatoma cells (HepG2 line). Hum Exp Toxicol 19(6):367–376

    Article  CAS  Google Scholar 

  • Babaei H, Roshangar L, Sakhaee E, Abshenas J, Kheirandish R, Dehghani R (2012) Ultrastructural and morphometrical changes of mice ovaries following experimentally induced copper poisoning. Iran Red Crescent Med J 14(9):558–568

    CAS  Google Scholar 

  • Bires J, Maracek I, Bartko P, Biresova M, Weissova T (1995) Accumulation of trace elements in sheep and the effects upon qualitative and quantitative ovarian changes. Vet Hum Toxicol 37(4):349–356

    CAS  Google Scholar 

  • Camaioni A, Hascall VC, Yanagishita M, Salustri A (1993) Effects of exogenous hyaluronic acid and serum on matrix organization and stability in the mouse cumulus cell-oocyte complex. J Biol Chem 268(27):20473–20481

    CAS  Google Scholar 

  • Campagna C, Guillemette C, Ayotte P, Bailey JL (2009) Effects of an environmentally relevant organochlorine mixture and a metabolized extract of this mixture on porcine sperm parameters in vitro. J Androl 30(3):317–324. doi:10.2164/jandrol.108.006478

    Article  CAS  Google Scholar 

  • Cao B, Zheng Y, Xi T, Zhang C, Song W, Burugapalli K, Yang H, Ma Y (2012) Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed Microdevices 14(4):709–720. doi:10.1007/s10544-012-9651-x

    Article  CAS  Google Scholar 

  • Cavallini A, Lippolis C, Vacca M, Nardelli C, Castegna A, Arnesano F, Carella N, Depalo R (2016) The effects of chronic lifelong activation of the AHR pathway by industrial chemical pollutants on female human reproduction. PLoS One 11(3):0152181. doi:10.1371/journal.pone.0152181

    Article  Google Scholar 

  • Ceko MJ, Hummitzsch K, Hatzirodos N, Rodgers RJ, Harris HH (2015) Quantitative elemental analysis of bovine ovarian follicles using X-ray fluorescence imaging. Metallomics 7(5):828–836. doi:10.1039/c5mt00035a

    Article  CAS  Google Scholar 

  • Choi MJ, Kim SC, Kim AN, Kwon HB, Ahn RS (2007) Effect of endocrine disruptors on the oocyte maturation and ovulation in amphibians, Rana dybowskii. Integr Biosci 11:1–8

    Article  CAS  Google Scholar 

  • Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26(3):249–261. doi:10.1385/MB:26:3:249

    Article  CAS  Google Scholar 

  • Corn CM, Hauser-Kronberger C, Moser M, Tews G, Ebner T (2005) Predictive value of cumulus cell apoptosis with regard to blastocyst development of corresponding gametes. Fertil Steril 84(3):627–633. doi:10.1016/j.fertnstert.2005.03.061

    Article  Google Scholar 

  • Cortizo MC, De Mele MFL, Cortizo AM (2004) Metallic dental material biocompatibility in osteoblastlike cells: correlation with metal ion release. Biol Trace Elem Res 100(2):151–168

    Article  CAS  Google Scholar 

  • Didenko VV, Ngo H, Baskin DS (2003) Early necrotic DNA degradation: presence of blunt-ended DNA breaks, 3′ and 5′ overhangs in apoptosis, but only 5′ overhangs in early necrosis. Am J Pathol 162(5):1571–1578. doi:10.1016/S0002-9440(10)64291-5

    Article  CAS  Google Scholar 

  • Eppig JJ (1991) Intercommunication between mammalian oocytes and companion somatic cells. Bioassays 13:569–574. doi:10.1002/bies.950131105

    Article  CAS  Google Scholar 

  • Evers JLH (2002) Female subfertility. Lancet (London, England) 360(9327):151–159. doi:10.1016/S0140-6736(02)09417-5

    Article  Google Scholar 

  • Fatehi AN, Zeinstra EC, Kooij RV, Colenbrander B, Bevers MM (2002) Effect of cumulus cell removal of in vitro matured bovine oocytes prior to in vitro fertilization on subsequent cleavage rate. Theriogenology 57(4):1347–1355

    Article  CAS  Google Scholar 

  • Fenga C (2016) Occupational exposure and risk of breast cancer. Biomed Rep 4(3):282–292. doi:10.3892/br.2016.575

    Article  Google Scholar 

  • Formigari A, Gregianin E, Irato P (2013) The effect of zinc and the role of p53 in copper-induced cellular stress responses. J Appl Toxicol JAT 33(7):527–536. doi:10.1002/jat.2854

    Article  CAS  Google Scholar 

  • Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189(1–2):147–163

    Article  CAS  Google Scholar 

  • Ge L, Sui H-S, Lan G-C, Liu N, Wang J-Z, Tan J-H (2008) Coculture with cumulus cells improves maturation of mouse oocytes denuded of the cumulus oophorus: observations of nuclear and cytoplasmic events. Fertil Steril 90(6):2376–2388. doi:10.1016/j.fertnstert.2007.10.054

    Article  Google Scholar 

  • Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ (2001) Environmental copper: its dynamics and human exposure issues. Journal of toxicology and environmental health. Part B Crit Rev 4(4):341–394. doi:10.1080/109374001753146207

    CAS  Google Scholar 

  • Gilchrist RB, Lane M, Thompson JG (2008) Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update 14:155–177. doi:10.1093/humupd/dmm040

    Article  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  Google Scholar 

  • Handy RD (2003) Chronic effects of copper exposure versus endocrine toxicity: two sides of the same toxicological process?. Comparative biochemistry and physiology. Part A Mol Integr Physiol 135(1):25–38

    Article  Google Scholar 

  • Heller D, Cahill D, Schultz R (1981) Biochemical studies of mammalian oogenesis: metabolic cooperativity between granulosa cells and growing. Dev Biol 84:455–464

    Article  CAS  Google Scholar 

  • Herlands R, Schultz R (1984) Regulation of mouse oocyte growth: probably nutritional role for intercellular communication between follicle cells and oocytes in oocyte growth. J Exp Zool 229:317–325

    Article  CAS  Google Scholar 

  • Hoppe R, Bavister B (1984) Evaluation of the fluorescein diacetate (FDA) vital dye viability test with hamster and bovine embryos. Anim Reprod Sci 6:323–325

    Article  Google Scholar 

  • Høst E, Gabrielsen A, Lindenberg S, Smidt-Jensen S (2002) Apoptosis in human cumulus cells in relation to zona pellucida thickness variation, maturation stage, and cleavage of the corresponding oocyte after intracytoplasmic sperm injection. Fertil Steril 77(3):511–515

    Article  Google Scholar 

  • Ikeda S, Imai H, Yamada M (2003) Apoptosis in cumulus cells during in vitro maturation of bovine cumulus-enclosed oocytes. Reproduction 125(3):369–376

    Article  CAS  Google Scholar 

  • Jazvinšćak Jembrek M, Vlainić J, Radovanović V, Erhardt J, Oršolić N (2014) Effects of copper overload in P19 neurons: impairment of glutathione redox homeostasis and crosstalk between caspase and calpain protease systems in ROS-induced apoptosis. Biometals An Int J Role Metal Ions Biol Biochem Med 27(6):1303–1322. doi:10.1007/s10534-014-9792-x

    Article  Google Scholar 

  • Jiménez Del Río M, Vélez-Pardo C (2004) Transition metal-induced apoptosis in lymphocytes via hydroxyl radical generation, mitochondria dysfunction, and caspase-3 activation: an in vitro model for neurodegeneration. Arch Med Res 35(3):185–193. doi:10.1016/j.arcmed.2004.01.001

    Article  Google Scholar 

  • Joshi A, Rastedt W, Faber K, Schultz AG, Bulcke F, Dringen R (2016) Uptake and toxicity of copper oxide nanoparticles in C6 Glioma cells. Neurochem Res. doi:10.1007/s11064-016-2020-z

  • Kamarianos A, Karamanlis X, Theodosiadou E, Goulas P, Smokovitis A (2003) The presence of environmental pollutants in the semen of farm animals (bull, ram, goat, and boar). Reprod Toxicol (Elmsford, N.Y.) 17(4):439–445

    Article  CAS  Google Scholar 

  • Kaplan JH, Lutsenko S (2009) Copper transport in mammalian cells: special care for a metal with special needs. J Biol Chem 284:25461–25465. doi:10.1074/jbc.R109.031286

    Article  CAS  Google Scholar 

  • Krumschnabel G, Manzl C, Berger C, Hofer B (2005) Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes. Toxicol Appl Pharmacol 209(1):62–73. doi:10.1016/j.taap.2005.03.016

    Article  CAS  Google Scholar 

  • Kuku G, Saricam M, Akhatova F, Danilushkina A, Fakhrullin RF, Culha M (2016) Surface-enhanced Raman scattering to evaluate nanomaterial cytotoxicity on living cells. Anal Chem. doi:10.1021/acs.analchem.6b02917

  • Leoni G, Bogliolo L, Deiana G, Berlinguer F, Rosati I, Pintus PP, Ledda S, Naitana S (2002) Influence of cadmium exposure on in vitro ovine gamete dysfunction. Reprod Toxicol (Elmsford, N.Y.) 16(4):371–377

    Article  CAS  Google Scholar 

  • Lévay G, Ye Q, Bodell WJ (1997) Formation of DNA adducts and oxidative base damage by copper mediated oxidation of dopamine and 6-hydroxydopamine. Exp Neurol 146(2):570–574. doi:10.1006/exnr.1997.6560

    Article  Google Scholar 

  • Liu Y, Yang H, Song Z, Gu S (2014) Copper excess in liver HepG2 cells interferes with apoptosis and lipid metabolic signaling at the protein level. Turk J Gastroenterol Off J Turk Soc Gastroent 25(Suppl 1):116–121. doi:10.5152/tjg.2014.5064

    Google Scholar 

  • Liu Y-H, Li A, Shao J, Xie C-Z, Song X-Q, Bao W-G, Xu JY (2016) Four cu(ii) complexes based on antitumor chelators: synthesis, structure, DNA binding/damage, HSA interaction and enhanced cytotoxicity. Dalton Trans (Cambridge, England: 2003) 45(19):8036–8049. doi:10.1039/c6dt00451b

    Article  CAS  Google Scholar 

  • Lonergan P, Fair T (2008) In vitro-produced bovine embryos: dealing with the warts. Theriogenology 69:17–22. doi:10.1016/j.theriogenology.2007.09.007

    Article  CAS  Google Scholar 

  • Lovejoy DB, Guillemin GJ (2014) The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci 6:173. doi:10.3389/fnagi.2014.00173

    Article  Google Scholar 

  • Lu J, Zheng Y-L, Wu D-M, Sun D-X, Shan Q, Fan S-H (2006) Trace amounts of copper induce neurotoxicity in the cholesterol-fed mice through apoptosis. FEBS Lett 580(28–29):6730–6740. doi:10.1016/j.febslet.2006.10.072

    Article  CAS  Google Scholar 

  • Luciano AM, Lodde V, Beretta MS, Colleoni S, Lauria A, Modina S (2005) Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus-oocyte complexes: role of cumulus cells, cyclic adenosine 3′,5′-monophosphate, and glutathione. Mol Reprod Dev 71(3):389–397. doi:10.1002/mrd.20304

    Article  CAS  Google Scholar 

  • Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87(3):1011–1046. doi:10.1152/physrev.00004.2006

    Article  CAS  Google Scholar 

  • Minervino AHH, Barrêto Júnior RA, Ferreira RNF, Rodrigues FAML, Headley SA, Mori CS, Ortolani EL (2009) Clinical observations of cattle and buffalos with experimentally induced chronic copper poisoning. Res Vet Sci 87(3):473–478. doi:10.1016/j.rvsc.2009.05.002

    Article  CAS  Google Scholar 

  • Miska-Schramm A, Kruczek M, Kapusta J (2014) Effect of copper exposure on reproductive ability in the bank vole (Myodes glareolus). Ecotoxicol (London, England) 23(8):1546–1554. doi:10.1007/s10646-014-1295-6

    Article  CAS  Google Scholar 

  • Nagyova E, Scsukova S, Nemcova L, Mlynarcikova A, Yi YJ, Sutovsky M, Sutovsky P (2012) Inhibition of proteasomal proteolysis affects expression of extracellular matrix components and steroidogenesis in porcine oocyte-cumulus complex. Dom Anim Endocrinol 42:50–62. doi:10.1016/j.domaniend.2011.09.003

    Article  CAS  Google Scholar 

  • Narayanan VS, Fitch CA, Levenson CW (2001) Tumor suppressor protein p53 mRNA and subcellular localization are altered by changes in cellular copper in human Hep G2 cells. J Nut 131(5):1427–1432

    CAS  Google Scholar 

  • Nevitt T, Ohrvik H, Thiele DJ (2012) Charting the travels of copper in eukaryotes from yeast to mammals. Biochim Bioph Acta 1823(9):1580–1593. doi:10.1016/j.bbamcr.2012.02.011

    Article  CAS  Google Scholar 

  • Nzengue Y, Steiman R, Rachidi W, Favier A, Guiraud P (2012) Oxidative stress induced by cadmium in the C6 cell line: role of copper and zinc. Biol Trace Elem Res 146(3):410–419. doi:10.1007/s12011-011-9265-9

    Article  CAS  Google Scholar 

  • Oe S, Miyagawa K, Honma Y, Harada M (2016) Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease. Exp Cell Res. doi:10.1016/j.yexcr.2016.08.003

  • Olive PL, Durand RE, Jackson SM, Le Riche JC, Luo C, Ma R, McLaren DB, Aquino-Parsons C, Thomson TA, Trotter T (1999) The comet assay in clinical practice. Acta Oncol 8:839–844

    Article  Google Scholar 

  • Petris MJ, Strausak D, Mercer JF (2000) The Menkes copper transporter is required for the activation of tyrosinase. Hum Mol Genet 9(19):2845–2851

    Article  CAS  Google Scholar 

  • Philipp S, Sosna J, Adam D (2016) Cancer and necroptosis: friend or foe? CMLS 73(11–12):2183–2193. doi:10.1007/s00018-016-2193-2

    Article  CAS  Google Scholar 

  • Picco SJ, Rosa DE, Anchordoquy JP, Anchordoquy JM, Seoane A, Mattioli A, Furnus CC (2012) Effects of copper sulphate concentrations during in vitro maturation of bovine oocytes. Theriogenology 77(2):373–381. doi:10.1016/j.theriogenology.2011.08.009

    Article  CAS  Google Scholar 

  • Pitarque M, Vaglenov A, Nosko M, Hirvonen A, Norppa H, Creus A, Marcos R (1999) Evaluation of DNA damage by the comet assay in shoe workers exposed to toluene and other organic solvents. Mut Res 441(1):115–127

    Article  CAS  Google Scholar 

  • Pläsier B, Lloyd DR, Paul GC, Thomas CR, Al-Rubeai M (1999) Automatic image analysis for quantification of apoptosis in animal cell culture by annexin-V affinity assay. J Immunol Meth 229(1–2):81–95

    Article  Google Scholar 

  • Pourahmad J, O’Brien PJ (2000) A comparison of hepatocyte cytotoxic mechanisms for Cu2+ and Cd2+. Toxicology 143:263–273

    Article  CAS  Google Scholar 

  • Pramanik A, Laha D, Dash SK, Chattopadhyay S, Roy S, Das DK, Pramanik P, Karmakar P (2016) An in-vivo study for targeted delivery of copper-organic complex to breast cancer using chitosan polymer nanoparticles. Mat Sci Eng C 68:327–337. doi:10.1016/j.msec.2016.05.014

    Article  CAS  Google Scholar 

  • Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    Article  CAS  Google Scholar 

  • Rana SVS (2008) Metals and apoptosis: recent developments. J Trace Elem Med Biol (GMS) 22(4):262–284. doi:10.1016/j.jtemb.2008.08.002

    Article  CAS  Google Scholar 

  • Rob O, Dolezalova J (1986) The toxicity of genital secretions to spermatozoa and disorders of ovulation in cows. Biol Chem Zivocisne Vyroby Vet 22:122–126

    Google Scholar 

  • Robb J, Norval M, Neill WA (1990) The use of tissue culture for the detection of mycotoxins. Lett Appl Microbiol 10(4):161–165

    Article  CAS  Google Scholar 

  • Rodriguez-Tellez BE, Marcano L, Villamediana-Monreal PC (2005) Effects of cadmium chloride exposure on in vitro maturation of bovine oocytes. Rev Cient 15:443–450

    Google Scholar 

  • Rosa DE, Anchordoquy JM, Anchordoquy JP, Sirini MA, Testa JA, Mattioli GA, Furnus CC (2016) Analyses of apoptosis and DNA damage in bovine cumulus cells after in vitro maturation with different copper concentrations: consequences on early embryo development. Zygote 24(6):869–879

    Article  CAS  Google Scholar 

  • Roychoudhury S, Bulla J, Sirotkin AV, Kolesarova A (2014) In vitro changes in porcine ovarian granulosa cells induced by copper. J Environ Sci Health Part A Toxic/Hazardous Subst Environ Eng 49(6):625–633. doi:10.1080/10934529.2014.865404

    Article  CAS  Google Scholar 

  • Rzymski P, Tomczyk K, Rzymski P, Poniedziałek P, Opala T, Wilczak M (2015) Impact of heavy metals on the female reproductive system. Ann Agri Environm Med AAEM 22(2):259–264. doi:10.5604/12321966.1152077

    Article  Google Scholar 

  • Santos RR, Schoevers EJ, Roelen BA (2014) Usefulness of bovine and porcine IVM/IVF models for reproductive toxicology. Reprod Biol Endocrinol: RB&E 12:117. doi:10.1186/1477-7827-12-117

    Article  Google Scholar 

  • Seino T, Saito H, Kaneko T, Takahashi T, Kawachiya S, Kurachi H (2002) Eight-hydroxy-2′-deoxyguanosine in granulosa cells is correlated with the quality of oocytes and embryos in an in vitro fertilization-embryo transfer program. Fertil Steril 77(6):1184–1190

    Article  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  Google Scholar 

  • Singh RP, Kumar S, Nada R, Prasad R (2006) Evaluation of copper toxicity in isolated human peripheral blood mononuclear cells and it’s attenuation by zinc: ex vivo. Mol Cell Biochem 282(1–2):13–21. doi:10.1007/s11010-006-1168-2

    Article  CAS  Google Scholar 

  • Snijder CA, te Velde E, Roeleveld N, Burdorf A (2012) Occupational exposure to chemical substances and time to pregnancy: a systematic review. Hum Reprod Upd 18(3):284–300. doi:10.1093/humupd/dms005

    Article  CAS  Google Scholar 

  • Spatari S, Bertram M, Fuse K, Graedel TE, Rechberger H (2002) The contemporary European copper cycle: 1 year stocks and flows. Ecol Econ 42:27–42

    Article  Google Scholar 

  • Steveson TC, Ciccotosto GD, Ma X-M, Mueller GP, Mains RE, Eipper BA (2003) Menkes protein contributes to the function of peptidylglycine alpha-amidating monooxygenase. Endocrinol 144(1):188–200. doi:10.1210/en.2002-220716

    Article  CAS  Google Scholar 

  • Sutton ML, Gilchrist RB, Thompson JG (2003) Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update 9:35–48

    Article  CAS  Google Scholar 

  • Tatemoto H, Sakurai N, Muto N (2000) Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol Reprod 63(3):805–810

    Article  CAS  Google Scholar 

  • Taupeau C, Poupon J, Nomé F, Lefèvre B (2001) Lead accumulation in the mouse ovary after treatment-induced follicular atresia. Reprod Toxicol (Elmsford, N.Y.) 15(4):385–391

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164. doi:10.1007/978-3-7643-8340-4_6

    Google Scholar 

  • Tice RR, Strauss GH (1995) The single cell gel electrophoresis/comet assay: a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells (Dayton, Ohio) 13(Suppl 1):207–214

    Google Scholar 

  • Tolunay HE, Şükür YE, Ozkavukcu S, Seval MM, Ateş C, Türksoy VA, Ecemiş T, Atabekoğlu CS, Özmen B, Berker B, Sönmezer M (2016) Heavy metal and trace element concentrations in blood and follicular fluid affect ART outcome. Eur J Obst Gynecol Reprod Biol 198:73–77. doi:10.1016/j.ejogrb.2016.01.001

    Article  CAS  Google Scholar 

  • Underwood EJ, Suttle NF (1999) The mineral nutrition of livestock. CABI Publishing, London

    Book  Google Scholar 

  • VanLandingham JW, Fitch CA, Levenson CW (2002) Zinc inhibits the nuclear translocation of the tumor suppressor protein p53 and protects cultured human neurons from copper-induced neurotoxicity. NeuroMolecular Med 1(3):171–182. doi:10.1385/NMM:1:3:171

    Article  CAS  Google Scholar 

  • Wang JY (2001) DNA damage and apoptosis. Cell Death Diff 8(11):1047–1048. doi:10.1038/sj.cdd.4400938

    Article  CAS  Google Scholar 

  • Wang L, Espinoza HM, Gallagher EP (2013) Brief exposure to copper induces apoptosis and alters mediators of olfactory signal transduction in coho salmon. Chemosphere 93:2639–2643. doi:10.1016/j.chemosphere.2013.08.044

    Article  CAS  Google Scholar 

  • Wang Y, Zeng S, Lin T-M, Krugner-Higby L, Lyman D, Steffen D, Xiong MP (2014) Evaluating the anticancer properties of liposomal copper in a nude xenograft mouse model of human prostate cancer: formulation, in vitro, in vivo, histology and tissue distribution studies. Pharm Res 31(11):3106–3119. doi:10.1007/s11095-014-1403-6

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2006) Preventing disease through healthy environments. WHO, Geneva

    Google Scholar 

  • Wu J, Tu D, Yuan L-Y, Yuan H, Wen L-X (2013) T-2 toxin exposure induces apoptosis in rat ovarian granulosa cells through oxidative stress. Environ Toxicol Pharmacol 36(2):493–500. doi:10.1016/j.etap.2013.03.017

    Article  CAS  Google Scholar 

  • Younglai EV, Foster WG, Hughes EG, Trim K, Jarrell JF (2002) Levels of environmental contaminants in human follicular fluid, serum, and seminal plasma of couples undergoing in vitro fertilization. Arch Environ Contam Toxicol 43(1):121–126. doi:10.1007/s00244-001-0048-8

    Article  CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 171:145–156

    Article  Google Scholar 

  • Yu W-R, Jiang H, Wang J, Xie J-X (2008) Copper (Cu2+) induces degeneration of dopaminergic neurons in the nigrostriatal system of rats. Neurosci Bull 24(2):73–78. doi:10.1007/s12264-008-0073-y

    Article  CAS  Google Scholar 

  • Zhang L, Yang J, Cai Z, Yuan Z (2015) Understanding the spatial and temporal patterns of copper in-use stocks in China. Environ Sci Technol 49(11):6430–6437. doi:10.1021/acs.est.5b00917

    Article  CAS  Google Scholar 

  • Zhong L, Wang L, Xu L, Liu Q, Jiang L, Zhi Y, Lu W, Zhou P (2015) The role of NOS-mediated ROS accumulation in an early phase Cu-induced acute cytotoxicity in MCF-7 cells. Biometals 28(1):113–122. doi:10.1007/s10534-014-9807-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of Frigorífico Gorina S.A. for providing the bovine ovaries. We also thank Adriana Di Maggio for manuscript correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia C Furnus.

Ethics declarations

Funding

This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica de la República Argentina (PICT BID 1972–2013), Ministerio de Ciencia, Tecnología e Innovación Productiva de la Nación Argentina.

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anchordoquy, J.M., Anchordoquy, J.P., Nikoloff, N. et al. High copper concentrations produce genotoxicity and cytotoxicity in bovine cumulus cells. Environ Sci Pollut Res 24, 20041–20049 (2017). https://doi.org/10.1007/s11356-017-9683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9683-0

Keywords

Navigation