Skip to main content
Log in

Influence of selected cyclodextrins in sorption-desorption of chlorpyrifos, chlorothalonil, diazinon, and their main degradation products on different soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cyclodextrins (CDs) can improve the apparent solubility and bioavailability of a variety of organic compounds through the formation of inclusion complexes; accordingly, they are suitable for application in innovative remediation technologies of contaminated soils. However, the different interactions in the tertiary system CD/contaminant/soil matrix can affect the bioavailability of the inclusion complex through the possible sorption of CD and CD complex in the soil matrix, as well as with the potential of the sorbed CD to form the complex, concurrent with the desorption processes. This work focuses in changes produced by three different CDs in soil sorption-desorption processes of chlorpyrifos (CPF), diazinon (DZN), and chlorothalonil (CTL), and their major degradation products, 3,5,6-trichloro-2-pyridinol (TCP), 2-isopropyl-6-methyl-4-pyrimidinol, and hydroxy-chlorothalonil (OH-CTL). Cyclodextrins used were β-cyclodextrin (β-CD), methyl-β-cyclodextrin (Mβ-CD), and 2-hydroxypropyl-β-cyclodextrin (HPβ-CD). The studied soils belong to the orders Andisol, Ultisol, and Mollisol with different organic matter contents, mineral composition, and pH. The apparent sorption constants were significantly lower for the three pesticides in the presence of all CDs. The highest displacement of sorption equilibria was produced by the influence of Mβ-CD, with the most pronounced effect for CPF, a pesticide strongly sorbed on soils. The same was obtained for TCP and OH-CTL, highlighting the need to assess the risk of generating higher levels of groundwater contamination with polar metabolites if degradation rates are not controlled. The highest desorption efficiency was obtained for the systems CPF-β-CD, DZN-Mβ-CD, and CTL-Mβ-CD. Since the degree of adsorption of the complex is relevant to obtain an increase in the bioavailability of the contaminant, a distribution coefficient for the complexed pesticide in all CD–soil–pesticide system was estimated by using the apparent sorption coefficients, the stability constant for each CD–pesticide complex, and the distribution coefficients of free pesticide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aggarwal V, Deng X, Tuli A, Goh KS (2013) Diazinon—chemistry and environmental fate: a California perspective. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 223. Springer, New York, pp 107–140

    Google Scholar 

  • Armbrust KL (2001) Chlorothalonil and chlorpyrifos degradation products in golf course leachate. Pest Manag Sci 57:797–802

    Article  CAS  Google Scholar 

  • Baskaran S, Kookana RS, Naidu R (2003) Contrasting behaviour of chlorpyrifos and its primary metabolite, TCP (3, 5, 6-trichloro-2-pyridinol), with depth in soil profiles. Aust J Soil Res 41:749–760

    Article  CAS  Google Scholar 

  • Badr T, Hanna K, de Brauer C (2004) Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils. J Hazard Mater 112:215–223

    Article  CAS  Google Scholar 

  • Baez ME, Espinoza J, Silva R, Fuentes E (2015) Sorption-desorption behavior of pesticides and their degradation products in volcanic and nonvolcanic soils: interpretation of interactions through two-way principal component analysis. Environ Sci Pollut Res 22:8576–8585

    Article  CAS  Google Scholar 

  • Bergmark WR, Davis A, York C, Macintosh A, Jones G (1990) Dramatic fluorescence effects for coumarin laser dyes coincluded with organic solvents in cyclodextrins. J Phys Chem 94:5020–5022

    Article  CAS  Google Scholar 

  • Bavcon M, Trebše P, Zupančič-Kralj L (2003) Investigations of the determination and transformations of diazinon and malathion under environmental conditions using gas chromatography coupled with a flame ionisation detector. Chemosphere 50:595–601

    Article  CAS  Google Scholar 

  • Bian H, Chen J, Cai X, Liu P, Liu H, Qiao X, Huang L (2009) Inclusion complex of butachlor with β-cyclodextrin: characterization, solubility, and speciation-dependent adsorption. J Agric Food Chem 57:7453–7458

    Article  CAS  Google Scholar 

  • Brady JA, Wallender WW, Werner I, Fard BM, Zalom FG, Oliver MN, Wilson BW, Mata MM, Henderson JD, Deanovic LA, Upadhaya S (2006) Pesticide runoff from orchard floors in Davis, California, USA: a comparative analysis of diazinon and esfenvalerate. Agric Ecosyst Environ 115:56–68

    Article  CAS  Google Scholar 

  • Brusseau ML, Wang X, Hu Q (1994) Enhanced transport of low-polarity organic compounds through soil by cyclodextrin. Environ Sci Technol 28:952–956

    Article  CAS  Google Scholar 

  • Chaves A, Shea D, Cope WG (2007) Environmental fate of chlorothalonil in a Costa Rican banana plantation. Chemosphere 69:1166–1174

    Article  CAS  Google Scholar 

  • Chu X, Fang H, Pan X, Wang X, Shan M, Feng B, Yu Y (2008) Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations. J Environ Sci 20:464–469

    Article  CAS  Google Scholar 

  • Churchill D, Cheung JCF, Park YS, Smith VH, van Loon G, Buncel E (2006) Complexation of diazinon, an organophosphorus pesticide, with α-, β-, and γ-cyclodextrin. NMR and computational studies. Can J Chem 84:702–708

    Article  CAS  Google Scholar 

  • Coly A, Aaron J-J (1998) Cyclodextrin-enhanced fluorescence and photochemically-induced fluorescence determination of five aromatic pesticides in water. Anal Chim Acta 360:129–141

    Article  CAS  Google Scholar 

  • Connors KA (1997) The stability of cyclodextrin complexes in solution. Chem Rev 97:1325–1357

    Article  CAS  Google Scholar 

  • Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Article  Google Scholar 

  • Díaz-Cruz MS, Barceló D (2006) Highly selective sample preparation and gas chromatographic-mass spectrometric analysis of chlorpyrifos, diazinon and their major metabolites in sludge and sludge fertilized agricultural soils. J Chromatogr A 1132:21–27

    Article  Google Scholar 

  • Flaherty RJ, Nshime B, DeLaMarre M, DeJong S, Scott P, Lantz AW (2013) Cyclodextrins as complexation and extraction agents for pesticides from contaminated soil. Chemosphere 91:912–920

    Article  CAS  Google Scholar 

  • Gebremariam SY, Beutel MW, Yonge DR, Flury M, Harsh JB (2012) Adsorption and desorption of chlorpyrifos to soils and sediments. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 215. Springer New York, New York, pp 123–175

    Chapter  Google Scholar 

  • Hartnik T, Jensen J, Hermens JLM (2008) Nonexhaustive β-cyclodextrin extraction as a chemical tool to estimate bioavailability of hydrophobic pesticides for earthworms. Environ Sci Technol 42:8419–8425

    Article  CAS  Google Scholar 

  • Herrero-Hernandez E, Andrades MS, Alvarez-Martin A, Pose-Juan E, Rodriguez-Cruz MS, Sanchez-Martin MJ (2013) Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region. J Hydrol 486:234–245

    Article  CAS  Google Scholar 

  • Humbert S, Margni M, Charles R, Salazar OMT, Quirós AL, Jolliet O (2007) Toxicity assessment of the main pesticides used in Costa Rica. Agric Ecosyst Environ 118:183–190

    Article  CAS  Google Scholar 

  • Imfeld G, Vuilleumier S (2012) Measuring the effects of pesticides on bacterial communities in soil: a critical review. Eur J Soil Biol 49:22–30

    Article  CAS  Google Scholar 

  • Köprücü SŞ, Köprücü K, Ural MŞ, İspir Ü, Pala M (2006) Acute toxicity of organophosphorous pesticide diazinon and its effects on behavior and some hematological parameters of fingerling European catfish (Silurus glanis L.) Pestic Biochem Physiol 86:99–105

    Article  Google Scholar 

  • Kookana R, Gerritse R, Aylmore L (1990) Effect of organic cosolvent on adsorption and desorption of linuron and simazine in soil. Aust J Soil Res 28:717–725

    Article  CAS  Google Scholar 

  • Kumar Singh B, Walker A, Wright DJ (2002) Persistence of chlorpyrifos, fenamiphos, chlorothalonil, and pendimethalin in soil and their effects on soil microbial characteristics. B Environ Contam Tox 69:181–188

    Article  CAS  Google Scholar 

  • Kumar A, Correll R, Grocke S, Bajet C (2010) Toxicity of selected pesticides to freshwater shrimp, Paratya australiensis (Decapoda: Atyidae): use of time series acute toxicity data to predict chronic lethality. Ecotoxicol Environ Saf 73:360–369

    Article  CAS  Google Scholar 

  • Landy D, Mallard I, Ponchel A, Monflier E, Fourmentin S (2012) Remediation technologies using cyclodextrins: an overview. Environ Chem Lett 10:225–237

    Article  CAS  Google Scholar 

  • Lau EV, Gan S, Ng HK, Poh PE (2014) Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environ Pollut 184:640–649

    Article  CAS  Google Scholar 

  • Leitao S, Cerejeira MJ, Van den Brink PJ, Sousa JP (2014) Effects of azoxystrobin, chlorothalonil, and ethoprophos on the reproduction of three terrestrial invertebrates using a natural Mediterranean soil. Appl Soil Ecol 76:124–131

    Article  Google Scholar 

  • Liu H, Cai X, Chen J (2013) Mathematical model for cyclodextrin alteration of bioavailability of organic pollutants. Environ Sci Technol 47:5835–5842

    Article  CAS  Google Scholar 

  • Lucas-Abellán C, Gabaldón-Hernández JA, Penalva J, Fortea MI, Núñez-Delicado E (2008) Preparation and characterization of the inclusion complex of chlorpyrifos in cyclodextrins to improve insecticide formulations. J Agric Food Chem 56:8081–8085

    Article  Google Scholar 

  • Magnusdottir A, Másson M, Loftsson T (2002) Self association and cyclodextrin solubilization of NSAIDs. J Incl Phenom Macrocyl Chem 44:213–218

    Article  CAS  Google Scholar 

  • McManus SL, Moloney M, Richards KG, Coxon CE, Danaher M (2014) Determination and occurrence of phenoxyacetic acid herbicides and their transformation products in groundwater using ultra high performance liquid chromatography coupled to tandem mass spectrometry. Molecules 19:20627–20649

    Article  Google Scholar 

  • Morillo E, Pérez-Martínez JI, Ginés JM (2001) Leaching of 2,4-D from a soil in the presence of β-cyclodextrin: laboratory columns experiments. Chemosphere 44:1065–1069

    Article  CAS  Google Scholar 

  • Morillo E, Sánchez-Trujillo MA, Moyano JR, Villaverde J, Gómez-Pantoja ME, Pérez-Martínez JI (2012) Enhanced solubilisation of six PAHs by three synthetic cyclodextrins for remediation applications: molecular modelling of the inclusion complexes. PLoS One 7:e44137

    Article  CAS  Google Scholar 

  • Morillo E, Sánchez-Trujillo MA, Villaverde J, Madrid F, Undabeytia T (2014) Effect of contact time and the use of hydroxypropyl-β-cyclodextrin in the removal of fluorene and fluoranthene from contaminated soils. Sci Total Environ 496:144–154

    Article  CAS  Google Scholar 

  • Ni Y, Liang X, Chen J, Zhang Q, Ma L, Wu W, Kettrup A (2004) Investigation on the influence of methanol on adsorption and leaching of pesticides with soil column liquid chromatography. Chemosphere 56:1137–1142

    Article  CAS  Google Scholar 

  • Papadopoulou ES, Karas PA, Nikolaki S, Storck V, Ferrari F, Trevisan M, Tsiamis G, Martin-Laurent F, Karpouzas DG (2016) Dissipation and adsorption of isoproturon, tebuconazole, chlorpyrifos and their main transformation products under laboratory and field conditions. Sci Total Environ 569–570:86–96

    Article  Google Scholar 

  • Rubio-Bellido M, Morillo E, Villaverde J (2016) Effect of addition of HPBCD on diuron adsorption–desorption, transport and mineralization in soils with different properties. Geoderma 265:196–203

    Article  CAS  Google Scholar 

  • Sánchez-Trujillo MA, Morillo E, Villaverde J, Lacorte S (2013) Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil. Environ Pollut 178:52–58

    Article  Google Scholar 

  • Shemer H, Sharpless CM, Linden KG (2005) Photodegradation of 3,5,6-trichloro-2-pyridinol in aqueous solution. Water Air Soil Pollut 168:145–155

    Article  CAS  Google Scholar 

  • Sinclair CJ, Boxall ABA, Parsons SA, Thomas MR (2006) Prioritization of pesticide environmental transformation products in drinking water supplies. Environ Sci Technol 40:7283–7289

    Article  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  Google Scholar 

  • Sucahyo D, van Straalen NM, Krave A, van Gestel CA (2008) Acute toxicity of pesticides to the tropical freshwater shrimp Caridina laevis. Ecotoxicol Environ Saf 69:421–427

    Article  CAS  Google Scholar 

  • Sun M, Luo Y, Teng Y, Jia Z, Li Z, Deng S (2013) Remediation of polycyclic aromatic hydrocarbon and metal-contaminated soil by successive methyl-β-cyclodextrin-enhanced soil washing–microbial augmentation: a laboratory evaluation. Environ Sci Pollut Res 20:976–986

    Article  CAS  Google Scholar 

  • Tang T, Boenne W, Desmet N, Seuntjens P, Bronders J, van Griensven A (2015) Quantification and characterization of glyphosate use and loss in a residential area. Sci Total Environ 517:207–214

    Article  CAS  Google Scholar 

  • Tardioli PW, Zanin GM, de Moraes FF (2006) Characterization of Thermoanaerobacter cyclomaltodextrin glucanotransferase immobilized on glyoxyl-agarose. Enzym Microb Technol 39:1270–1278

    Article  CAS  Google Scholar 

  • Tomlin C (2006) The e-pesticide manual: a world compendium. 14th edition, version 4.0. British Crop Protection Council. Alton, pp 146, 150, 231, 574

  • Trellu C, Mousset E, Pechaud Y, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2016) Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. J Hazard Mater 306:149–174

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (1999). Reregistration eligibility decision (RED). Chlorothalonil, EPA738-R-99-004, Washington, DC

  • Villaverde J (2007) Time-dependent sorption of norflurazon in four different soils: use of beta-cyclodextrin solutions for remediation of pesticide-contaminated soils. J Hazard Mater 142:184–190

    Article  CAS  Google Scholar 

  • Villaverde J, Posada-Baquero R, Rubio-Bellido M, Laiz L, Saiz-Jimenez C, Sanchez-Trujillo MA, Morillo E (2012) Enhanced mineralization of diuron using a cyclodextrin-based bioremediation technology. J Agric Food Chem 60:9941–9947

    Article  CAS  Google Scholar 

  • Villeneuve DL, Curtis LR, Jenkins JJ, Warner KE, Tilton F, Kent ML, Watral VG, Cunningham ME, Markle DF, Sethajintanin D, Krissanakriangkrai O, Johnson ER, Grove R, Anderson KA (2005) Environmental stresses and skeletal deformities in fish from the Willamette River. Oregon Environ Sci Technol 39:3495–3506

    Article  CAS  Google Scholar 

  • Wang H, Wang C, Chen F, Wang X (2011) Anaerobic degradation of chlorothalonil in four paddy soils. Ecotoxicol Environ Saf 74:1000–1005

    Article  CAS  Google Scholar 

  • Watts M (2012) Chlorpyrifos as a possible global persistent organic pollutant. Pesticide Action Network North America, Oakland

    Google Scholar 

  • Wu XW, Cheng LY, Cao ZY, Yu YL (2012) Accumulation of chlorothalonil successively applied to soil and its effect on microbial activity in soil. Ecotoxicol Environ Saf 81:65–69

    Article  CAS  Google Scholar 

  • Ye M, Sun M, Hu F, Kengara FO, Jiang X, Luo Y, Yang X (2014) Remediation of organochlorine pesticides (OCPs) contaminated site by successive methyl-β-cyclodextrin (MCD) and sunflower oil enhanced soil washing—Portulaca oleracea L. cultivation. Chemosphere 105:119–125

    Article  CAS  Google Scholar 

  • Yu YL, Shan M, Fang H, Wang X, Chu XQ (2006) Responses of soil microorganisms and enzymes to repeated applications of chlorothalonil. J Agric Food Chem 54:10070–10075

    Article  CAS  Google Scholar 

  • Zeng Q-R, Tang H-X, Liao B-H, Zhong T, Tang C (2006) Solubilization and desorption of methyl-parathion from porous media: a comparison of hydroxypropyl-β-cyclodextrin and two nonionic surfactants. Water Res 40:1351–1358

    Article  CAS  Google Scholar 

  • Zhang M, Teng Y, Xu Z, Wang J, Christie P, Luo Y (2016) Cumulative effects of repeated chlorothalonil application on soil microbial activity and community in contrasting soils. J. Soils Sediments 16:1754–1763

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by Project FONDECYT 1140327 from Comisión Nacional de Ciencia y Tecnología (CONICYT), Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María E. Báez.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Báez, M.E., Espinoza, J., Silva, R. et al. Influence of selected cyclodextrins in sorption-desorption of chlorpyrifos, chlorothalonil, diazinon, and their main degradation products on different soils. Environ Sci Pollut Res 24, 20908–20921 (2017). https://doi.org/10.1007/s11356-017-9652-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9652-7

Keywords

Navigation