Skip to main content

Advertisement

Log in

Roots alterations in presence of phenanthrene may limit co-remediation implementation with Noccaea caerulescens

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Co-phytoremediation of both trace elements and polycyclic aromatic hydrocarbons (PAH) is an emerging technique to treat multi-contaminated soils. In this study, root morphological and structural features of the heavy metal hyperaccumulator Noccaea caerulescens, exposed to a model PAH phenanthrene (PHE) in combination with cadmium (Cd), were observed. In vitro cultivated seedlings were exposed to 2 mM of PHE and/or 5 μM of Cd for 1 week. Co-phytoremediation effectiveness appeared restricted because of a serious inhibition (about 40%) of root and shoot biomass production in presence of PHE, while Cd had no significant adverse effect on these parameters. The most striking effects of PHE on roots were a decreased average root diameter, the inhibition of cell and root hair elongation and the promotion of lateral root formation. Moreover, endodermal cells with suberin lamellae appeared closer to the root apex when exposed to PHE compared to control and Cd treatments, possibly due to modified lateral root formation. The stage with well-developed suberin lamellae was not influenced by PHE whereas peri-endodermal layer development was impaired in PHE-treated plants. Many of these symptoms were similar to a water-deficit response. These morphological and structural root modifications in response to PHE exposition might in turn limit Cd phytoextraction by N. caerulescens in co-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahammed GJ, Choudhary SP, Chen S et al (2013) Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64:199–213. doi:10.1093/jxb/ers323

    Article  CAS  Google Scholar 

  • Ahammed GJ, Yuan H-L, Ogweno JO et al (2012) Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere 86:546–555

    Article  CAS  Google Scholar 

  • Alkio M, Tabuchi TM, Wang X, Colón-Carmona A (2005) Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J Exp Bot 56:2983–2994. doi:10.1093/jxb/eri295

    Article  CAS  Google Scholar 

  • Assunção AG, Bookum WM, Nelissen HJ et al (2003) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419

    Article  Google Scholar 

  • Bibikova TN, Jacob T, Dahse I, Gilroy S (1998) Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana. Development 125:2925–2934

    CAS  Google Scholar 

  • Cruz RT, Jordan WR, Drew MC (1992) Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant Physiol 99:203–212

    Article  CAS  Google Scholar 

  • Datta S, Kim CM, Pernas M et al (2011) Root hairs: development, growth and evolution at the plant-soil interface. Plant Soil 346:1–14. doi:10.1007/s11104-011-0845-4

    Article  CAS  Google Scholar 

  • Dolan L, Janmaat K, Willemsen V et al (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84

    CAS  Google Scholar 

  • Dupuy J, Leglize P, Vincent Q et al (2016) Effect and localization of phenanthrene in maize roots. Chemosphere 149:130–136

    Article  CAS  Google Scholar 

  • Dupuy J, Ouvrard S, Leglize P, Sterckeman T (2015) Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by phenanthrene. Chemosphere 124:110–115. doi:10.1016/j.chemosphere.2014.11.051

    Article  CAS  Google Scholar 

  • Gonneau C, Genevois N, Frérot H et al (2014) Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant Soil 384:271–287. doi:10.1007/s11104-014-2208-4

    Article  CAS  Google Scholar 

  • Henner P, Schiavon M, Druelle V, Lichtfouse E (1999) Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. Org Geochem 30:963–969

    Article  CAS  Google Scholar 

  • Krzebietke S, Sienkiewicz S (2010) Effect of soil contamination with anthracene and pyrene on yield and accumulation of macronutrients in butter lettuce [Lactuca sativa L.] J Elem 15:653–660

    Google Scholar 

  • Kummerová M, Kmentová E (2004) Photoinduced toxicity of fluoranthene on germination and early development of plant seedling. Chemosphere 56:387–393. doi:10.1016/j.chemosphere.2004.01.007

    Article  Google Scholar 

  • Kummerová M, Zezulka Š, Váňová L, Fišerová H (2012) Effect of organic pollutant treatment on the growth of pea and maize seedlings. Cent Eur J Biol 7:159–166

    Google Scholar 

  • Kummerová M, Zezulka Š, Babula P, Váňová L (2013) Root response in Pisum sativum and Zea mays under fluoranthene stress: morphological and anatomical traits. Chemosphere 90:665–673

    Article  Google Scholar 

  • Küpper H, Parameswaran A, Leitenmaier B, Trtilek M, Šetlík I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175(4):655–674

    Article  Google Scholar 

  • Liu H, Weisman D, Ye Y et al (2009) An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci 176:375–382

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37. doi:10.1093/jxb/erq281

    Article  CAS  Google Scholar 

  • Lux A, Morita S, Abe JUN, Ito K (2005) An improved method for clearing and staining free-hand sections and whole-mount samples. Ann Bot 96:989–996

    Article  Google Scholar 

  • Martinka M, Dolan L, Pernas M et al (2012) Endodermal cell–cell contact is required for the spatial control of Casparian band development in Arabidopsis thaliana. Ann Bot 110:361–371

    Article  Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2005) Phytoremediation in the tropics–influence of heavy crude oil on root morphological characteristics of graminoids. Environ Pollut 138:86–91

    Article  CAS  Google Scholar 

  • Maxted AP, Black CR, West HM et al (2007) Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Environ Pollut 150:363–372. doi:10.1016/j.envpol.2007.01.021

    Article  CAS  Google Scholar 

  • Oguntimehin I, Eissa F, Sakugawa H (2010) Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum mill): fluoranthene mists negatively affected tomato plants. Chemosphere 78:877–884

    Article  CAS  Google Scholar 

  • Ouvrard S, Barnier C, Bauda P et al (2011) In situ assessment of phytotechnologies for multicontaminated soil management. Int J Phytorem 13(Suppl 1):254–263

    Google Scholar 

  • Pašková V, Hilscherová K, Feldmannová M, Bláha L (2006) Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N-heterocyclic derivatives. Environ Toxicol Chem 25:3238–3245

    Article  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen M a K (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169. doi:10.1111/j.1365-3040.2008.01908.x

    Article  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35

    Article  CAS  Google Scholar 

  • Schwartz C, Sirguey C, Peronny S et al (2006) Testing of uutstanding individuals of Thlaspi caerulescens for cadmium phytoextraction. Int J Phytorem 8:339–357. doi:10.1080/15226510600992964

    Article  CAS  Google Scholar 

  • Sirguey C, Ouvrard S (2013) Contaminated soils salinity, a threat for phytoextraction? Chemosphere 91:269–274

    Article  CAS  Google Scholar 

  • Smith M, Flowers T, Duncan H, Alder J (2006) Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ Pollut 141:519–525

    Article  CAS  Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542. doi:10.1093/jexbot/51.350.1531

    Article  CAS  Google Scholar 

  • Sun L, Yan X, Liao X et al (2011) Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L. Environl Pollut 159:3398–3405. doi:10.1016/j.envpol.2011.08.045

    Article  CAS  Google Scholar 

  • Van Liedekerke M, Prokop F, Rabl-Berger S, et al (2014) Progress in the management of contaminated sites in Europe [report EUR 26,376 EN].

  • Váňová L, Kummerová M, Klemš M, Zezulka Š (2009) Fluoranthene influences endogenous abscisic acid level and primary photosynthetic processes in pea (Pisum sativum L.) plants in vitro. Plant Growth Regul 57:39–47. doi:10.1007/s10725-008-9318-z

    Article  Google Scholar 

  • von Guttenberg H (1968) Der primäre Bau der Angiospermenwurzel. Handbuch der Pflanzenanatomie. Bd. VIII, Teil 5

  • Wilcke W (2000) Polycyclic aromatic hydrocarbons (PAHs) in soil — a review. Z Pflanzenernähr Bodenk 163:229–248. doi:10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6

    Article  CAS  Google Scholar 

  • Xu W, Jia L, Baluska F et al (2012) PIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion. J Exp Bot 63:6105–6114. doi:10.1093/jxb/ers259

    Article  CAS  Google Scholar 

  • Yang X, Guo S, Guo L, Wei C (2012) Ammonium enhances the uptake, bioaccumulation, and tolerance of phenanthrene in cucumber seedlings. Plant Soil 354:185–195

    Article  CAS  Google Scholar 

  • Zelko I, Lux A, Czibula K (2008) Difference in the root structure of hyperaccumulator Thlaspi caerulescens and non-hyperaccumulator Thlaspi arvense. Intl J Environ Pollut 33:123–132. doi:10.1504/IJEP.2008.019387

    Article  CAS  Google Scholar 

  • Zelko I, Lux A, Sterckeman T et al (2012) An easy method for cutting and fluorescent staining of thin roots. Ann Bot 110:475–478

    Article  CAS  Google Scholar 

  • Zhan X, Yi X, Yue L et al (2015) Cytoplasmic pH-stat during Phenanthrene uptake by wheat roots: a mechanistic consideration. Environ Sci Technol 49:6037–6044. doi:10.1021/acs.est.5b00697

    Article  CAS  Google Scholar 

  • Zhan X, Zhang X, Yin X, et al (2012) H/phenanthrene symporter and Aquaglyceroporin are implicated in Phenanthrene uptake by wheat ( L.) roots. J Environ Qual 41:188. doi: 10.2134/jeq2011.0275

  • Zhang H, Dang Z, Zheng LC, Yi XY (2009) Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.) Int J Environ Sci Tech 6:249–258

    Article  Google Scholar 

  • Zhang Z, Rengel Z, Meney K et al (2011) Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species. J Hazard Mater 189:119–126. doi:10.1016/j.jhazmat.2011.02.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out thanks to financial support from the Lorraine region, France. Authors are grateful to Christian Mustin and Joëlle Gérard for their kind assistance during the root structural studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Sirguey.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 3528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelko, I., Ouvrard, S. & Sirguey, C. Roots alterations in presence of phenanthrene may limit co-remediation implementation with Noccaea caerulescens . Environ Sci Pollut Res 24, 19653–19661 (2017). https://doi.org/10.1007/s11356-017-9592-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9592-2

Keywords

Navigation