Skip to main content
Log in

An insight into salt stress tolerance mechanisms of Chenopodium album

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Salt stress is one of the most dramatic abiotic stresses that induce oxidative and osmotic stress simultaneously. Salt stress is known to be more effective in reducing growth and yield of glycophytes; however, halophytes are able to withstand salt stress. Nonetheless, variability exists among different halophytic plants species from different plant families. Chenopodium album belongs to Chenopodiacea family and is known as weed in many regions of world; however, it is a very interesting halophytic plant. Little research has conducted so far by considering C. album as model plant to study salt stress tolerance mechanisms. This article attempts to compile current literature in order to explain C. album salt stress tolerance mechanism and to highlight the knowledge gap relating to salt stress tolerance mechanism in C. album. Briefly, C. album has remarkable ability of seed dimorphism, sodium exclusion, and potassium retention. C. album further tolerates salt stress by increasing redox potential associated with high production of osmolytes and antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams P, Thomas JC, Vernon DM, Bohnert HJ, Jensen RG (1992) Distinct cellular and organismic responses to salt stress. Plant Cell Physiol 33:1215–1223

    CAS  Google Scholar 

  • Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58:1957–1967

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Bao M, Wang LC (2015) Cadmium toxicity in maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res 22:17022–17030

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Shahzad B, Ashraf U (2016) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res. doi:10.1007/s11356-016-6382-1

  • Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.) Funct Integr Genomics 8:287–300

    Article  CAS  Google Scholar 

  • Bonales-Alatorre E, Shabala S, Chen ZH, Pottosin I (2013) Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiol 162:940–952

    Article  CAS  Google Scholar 

  • Clement M, Lambert A, Herouart D, Boncompagni E (2008) Identification of new up-regulated genes under drought stress in soybean nodules. Gene 426:15–22

    Article  CAS  Google Scholar 

  • Cuin TA, Stefano JG, Jha D, Tester M (2011) Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell and Environ 34:947–961

    Article  CAS  Google Scholar 

  • Cunhua S, Wei D, Xiangling C, Xinna X, Yahong Z, Dong S, Jianjie S (2010) The effects of drought stress on the activity of acid phosphatase and its protective enzymes in pigweed leaves. Afr J Biotechnol 9:825–833

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–190

  • Gu L, Xu D, You T, Li X, Yao S, Chen S, Zhang F (2011) Analysis of gene expression by ESTs from suppression subtractive hybridization library in Chenopodium album L. under salt stress. Mol Biol Rep 38:5285–5295

    Article  CAS  Google Scholar 

  • Haq NU, Ammar M, Bano A, Luthe DS, Heckathorn SA, Shakeel SN (2013) Molecular characterization of Chenopodium album chloroplast small heat shock protein and its expression in response to different abiotic stresses. Plant Mol Biol Report 31:1230–1241. doi:10.1111/j. 1399-3054.2012.01599

    Article  CAS  Google Scholar 

  • Jeschke WD (1984) K+ Na+ exchange at cellular membranes, intracellular compartmentation of cations and salt tolerance. In Salinity tolerance in plants: Strategies for crop improvement. John Wiley and Sons Inc, New York 37–66

  • Jou Y, Wang YL, Yen HCE (2007) Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. Funct Plant Biol 34:353–359

    Article  CAS  Google Scholar 

  • Li WQ, Liu XJ, Ajmal Khan M, Yamaguchi S (2005) The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. J Plant Res 118:207–214

    Article  CAS  Google Scholar 

  • Martínez-Atíenza J, Jiang XY, Garciadeblás B, Mendoza I, Zhu JK (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Article  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol Plant Mol Biol 35:299–319

    Article  Google Scholar 

  • Mullan DJ, Colmer TD, Francki MG (2007) Arabidopsis-rice-wheat gene orthologues for Na+ transport and transcript analysis in wheat-L. elongatum aneuploids under salt stress. Mol Genetic and Genomics 277:199–212

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Rev of Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Oomen RJ, Benito B, Sentenac H, Rodríguez Navarro A, Talón M, Véry AA, Domingo C (2012) HKT2; 2/1, a K+ permeable transporter identified in a salt tolerant rice cultivar through surveys of natural genetic polymorphism. Plant J 71:750–762

    Article  CAS  Google Scholar 

  • Osmond CB, Bjorkman O, Anderson DJ (1980) Physiological processes in plant ecology toward a synthesis with Atriplex. Springer-Verlag, Berlin, p 468

    Book  Google Scholar 

  • Reimann C (1992) Sodium exclusion by Chenopodium species. J Exp Bot 43:503–510

    Article  CAS  Google Scholar 

  • Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant signaling and behavior 4:265–276

    Article  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    Article  CAS  Google Scholar 

  • Shabala L, Mackay A, Tian Y, Jacobsen SE, Zhou D, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiologia Plantarum 146(1):26–38

  • Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57:151–187

    Article  CAS  Google Scholar 

  • Shabala S, Pottosin II (2010) Potassium and potassium-permeable channels in plant salt tolerance. In: Ion channels and plant stress responses. Springer, Berlin Heidelberg, pp 87–110

    Chapter  Google Scholar 

  • Shabala S, Shabala L (2011) Ion transport and osmotic adjustment in plants and bacteria. Biomolecular Concepts 2:407–419

    Article  CAS  Google Scholar 

  • Shabala SN, Shabala SI, Martynenko AI, Babourina OI, Newman A (1998) Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Aust J Plant Physiol 25:609–616

    Article  CAS  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  CAS  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  CAS  Google Scholar 

  • Song J, Feng G, Tian CY, Zhang FS (2005) Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a saline environment during seed-germination stage. Ann Bot 96:399–405

    Article  CAS  Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    Article  CAS  Google Scholar 

  • Venable DL (1985) The evolutionary ecology of seed heteromorphism. Am Nat 126:557–595

    Article  Google Scholar 

  • Wang L, Huang ZY, Baskin CC, Baskin JM (2008) Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae) a C4 plant without Kranz anatomy. Ann Bot 102:757–769

    Article  Google Scholar 

  • Yao S, Chen S, Zhao J, Xu D, Lan H, Zhang F (2010b) Effect of three salts on germination and seedling survival of dimorphic seeds of Chenopodium album. Botany 88:821–828

    Article  CAS  Google Scholar 

  • Yao S, Lan H, Zhang F (2010a) Variation of seed heteromorphism in Chenopodium album and the effect of salinity stress on the descendants. Ann Bot 105:1015–1025

    Article  CAS  Google Scholar 

  • Yao SX, Chen SS, Xu DS, Lan HY (2009) Plant growth and responses of antioxidants of Chenopodium album to long-term NaCl and KCl stress. Plant Growth Regul 60:115–125

    Article  Google Scholar 

  • Yao SX, Chen SS, Xu DS, Lan HY (2010c) Effects of different salinity stress on K, Na content and relevant genes expression in leaves of Chenopodium album in Xinjiang. Guang pu xue yu guang pu fen xi= Guang pu 30:2281–2284

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Tanveer.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanveer, M., Shah, A.N. An insight into salt stress tolerance mechanisms of Chenopodium album . Environ Sci Pollut Res 24, 16531–16535 (2017). https://doi.org/10.1007/s11356-017-9337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9337-2

Keywords

Navigation