Skip to main content

Advertisement

Log in

Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Heavy metal soil contamination from mining and smelting has been reported in several regions around the world, and phytoextraction, using plants to accumulate risk elements in aboveground harvestable organs, is a useful method of substantially reducing this contamination. In our 3-year experiment, we tested the hypothesis that phytoextraction can be successful in local soil conditions without external fertilizer input. The phytoextraction efficiency of 15 high-yielding crop species was assessed in a field experiment performed at the Litavka River alluvium in the Příbram region of Czechia. This area is heavily polluted by Cd, Zn, and Pb from smelter installations which also polluted the river water and flood sediments. Heavy metal concentrations were analyzed in the herbaceous plants’ aboveground and belowground biomass and in woody plants’ leaves and branches. The highest Cd and Zn mean concentrations in the aboveground biomass were recorded in Salix x fragilis L. (10.14 and 343 mg kg−1 in twigs and 16.74 and 1188 mg kg−1 in leaves, respectively). The heavy metal content in woody plants was significantly higher in leaves than in twigs. In addition, Malva verticillata L. had the highest Cd, Pb, and Zn concentrations in herbaceous species (6.26, 12.44, and 207 mg kg−1, respectively). The calculated heavy metal removal capacities in this study proved high phytoextraction efficiency in woody species; especially for Salix × fragilis L. In other tested plants, Sorghum bicolor L., Helianthus tuberosus L., Miscanthus sinensis Andersson, and Phalaris arundinacea L. species are also recommended for phytoextraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baldatoni D, Cicatelli A, Bellino A, Castiglione S (2014) Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements. J Environ Manag 146:94–99

    Article  Google Scholar 

  • Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B, Cosentino SL, Fernando AL (2015) Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp and Arundo donax L. Bioenerg Res 8:1500–1511

    Article  CAS  Google Scholar 

  • Borůvka L, Huan-Wei C, Kozák J, Krištůvková S (1996) Heavy contamination of soils with cadmium, lead and zinc in the alluvium of Litavka River. Rostlinná Výroba 42:543–550

    Google Scholar 

  • Borůvka L, Vácha R (2006) Litavka River alluvium as a model area heavily polluted with potentially risk elements. In Phytoremediation of metal-contaminated soils: NATO Science Series 68: 267–298.

  • Carter MR (1993) Soil sampling and methods of analysis. Canadian Society of Soil Science. Lewis Publishers, Boca Raton

    Google Scholar 

  • Chen L, Long XH, Zhang ZH, Zheng XT, Rengel Z, Liu ZP (2011) Cadmium accumulation and translocation in two Jerusalem artichoke Helianthus tuberosus L. cultivars. Pedosphere 21:573–580

    Article  CAS  Google Scholar 

  • Chen LH, Gao S, Zhu P, Liu Y, Hu TD, Zhang J (2014) Comparative study of metal resistance and accumulation of lead and zinc in two poplars. Physiol Plant 151:390–405

    Article  CAS  Google Scholar 

  • Citterio S, Santagostino A, Fumagalli P, Prato N, Ranalli P, Sgorbati S (2003) Heavy metal tolerance and accumulatin of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 256:243–252

    Article  CAS  Google Scholar 

  • Čechmánková J, Vácha R, Skála J, Havelková M (2011) Heavy metals phytoextraction from heavily and moderately contaminated soil by field crops grown in monoculture and crop station. Soil & Water Res 6:120–130

    Article  Google Scholar 

  • Deram A, Denayer FO, Petit D, Van Haluwyn CH (2006) Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils. Environ Pollut 140:62–70

    Article  CAS  Google Scholar 

  • Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ Int 31:609–613

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Ermakov VV, Petrunina NS, Tyutikov SF, Danilova VN, Khushvakhtova SD, Degtyarev AP, Krechetova EV (2015) Concentrating metals by plant of the genus Salix and their importance for identification of Cd anomalies. Geochem Int 53:951–963

    Article  CAS  Google Scholar 

  • Escande V, Garoux L, Grison C, Thillier Y, Debart F, Vasseur JJ, Boulanger C, Grison C (2014) Ecological catalysis and phytoextraction: symbiosis for future. Appl Catal B Environ 146:279–288

    Article  CAS  Google Scholar 

  • Fischerová Z, Tlustoš P, Száková J, Šichorová K (2006) A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Pollut 144:93–100

    Article  Google Scholar 

  • He J, Li H, Ma C, Zhang Y, Polle A, Rennenberg H, Cheng X, Luo ZB (2015) Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation, and detoxification in poplar. New Phytol 205:240–254

    Article  CAS  Google Scholar 

  • He JL, Qin JJ, Long LY, Ma YL, Li H, Li K, Jiang XN, Liu TX, Polle A, Liang ZS, Luo ZB (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus x canescens. Physiol Plant 143:50–63

    Article  CAS  Google Scholar 

  • He JL, Ma CF, Ma YL, Li H, Kang JQ, Liu TX, Polle A, Peng CH, Luo ZB (2013) Cadmium tolerance in six poplar species. Environ Sci Pollut Res 20:163–174

    Article  CAS  Google Scholar 

  • Hejcman M, Vondráčková S, Müllerová V, Červená K, Száková J, Tlustoš P (2012) Effect of quick lime and superphosphate additives on emergence and survival of Rumex obtusifolius seedlings in acid and alkaline soils contaminated by As, Cd, Pb, and Zn. Plant Soil Environ 58:561–567

    Article  CAS  Google Scholar 

  • Hu Y, Nan Z, Su J, Wang N (2013) Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: implications for phytoextraction and phytostabilization. Environ Sci Pollut Res 20:7194–7203

    Article  CAS  Google Scholar 

  • Jakovljević T, Cvjetko Bubalo M, Orlović S, Sedak M, Bilandžić N, Brozinčević I, Radojčić Redovniković I (2014) Adaptive response of poplar (Populus nigra L.) after prolonged Cd exposure period. Environ Sci Pollut Res 5:3792–3802

    Article  Google Scholar 

  • Jakovljević T, Radojčić Redovniković I, Cvjetko M, Bukovac I, Sedak M, Dokić M, Bilandžić N (2015) The potential of poplar (Populus nigra var. italica) in the phytoremediation of cadmium. Šumarski list 139:223–232

    Google Scholar 

  • Kabata-Pendias A (2004) Soil-plant transfer of trace elements-an environmental issue. Geoderma 122:143–149

    Article  CAS  Google Scholar 

  • Kacálková L, Tlustoš P, Száková J (2009) Phytoextraction of cadmium, copper, zinc and mercury by selected plants. Plant Soil Environ 55:295–304

    Article  Google Scholar 

  • Kacálková L, Tlustoš P, Száková J (2014) Chromium, nickel, and lead accumulation in maize, sunflower, willow, and poplar. Pol J Environ Stud 23:753–761

    Google Scholar 

  • Kacálková L, Tlustoš P, Száková J (2015) Phytoextraction of risk elements by willow and poplar trees. Int J Phytoremediat 17:414–421

    Article  Google Scholar 

  • Kára J, Hutla P, Hanzlíková I (2011) Research on the use of energy crops for phytoremediation. Agritech Sci 5: 1–9, [in Czech]. ISSN 1802–8942

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32

    Article  CAS  Google Scholar 

  • Klang-Westin E, Eriksson J (2003) Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant Soil 249:127–137

    Article  CAS  Google Scholar 

  • Liu Z, He X, Chen W, Yuan F, Yan K, Tao D (2009) Accumulation and tolerance characteristic of cadmium in a potential hyperaccumulator – Lonicera japonica Thunb. J Hazarad Mater 169:170–175

    Article  CAS  Google Scholar 

  • Long X, Ni N, Wang L, Wang X, Wang J, Zhang Z, Zed R, Liu Z, Shao H (2013) Phytoremediation of cadmium-contaminated soil by two Jerusalem artichoke (Helianthus tuberosus L.) genotypes. Clean-Soil Air Water 41:202–209

    Article  CAS  Google Scholar 

  • Luo ZB, He J, Polle A, Rennenberg H (2016) Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 34:1131–1148

    Article  CAS  Google Scholar 

  • Mathiyazhagan N, Natarajan D (2013) Metal extraction competence of plants on waste dumps of magnesite mine, Salem District, South India. J Min Environ 4:113–124

    Google Scholar 

  • Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextrection of heavy metals. Environ Exp Bot 60:57–68

    Article  CAS  Google Scholar 

  • Moreira H, Marques APGC, Rangel AOSS, Castro PML (2011) Heavy metal accumulation in plant species indigenous to a contaminated Portuguese site: prospects for phytoremediation. Water Air Soil Pollut 221:377–389

    Article  CAS  Google Scholar 

  • Oh K, Cao T, Cheng H, Liang X, Hu X, Yan L, Yonemochi S, Takahi S (2015) Phytoremediation potential of Sorghum as a biofuel crop and the enhancement effects with microbe inoculation in heavy metal contamination soil. J Biosci Med 3:9–14

    CAS  Google Scholar 

  • Pandey VCH, Bajpai O, Singh N (2016) Energy crops in sustainable phytoremediation. Renew Sust Energ Rev 54:58–73

    Article  Google Scholar 

  • Pastor J, Gutierrez-Gines MJ, Hernandez AJ (2015) Heavy–metal phytostabilization potential of Agrostis castellana BoisandReuter. Int J Phytoremediat 17:988–998

    Article  CAS  Google Scholar 

  • Petrová Š, Benešová D, Soudek P, Vaněk T (2012) Enhancement of metal(loid)s phytoextraction by Cannabis sativa L. J Food Agric Environ 10:631–641

    Google Scholar 

  • Pidlisnyuk V, Stefanovska T, Lewis EE, Erickson LE, Davis LC (2014) Miscanthus as a productive biofuel crop for phytoremediation. Crit Rev Plant Sci 33:1–19

    Article  Google Scholar 

  • Polechońska L, Klink A (2014) Trace metal bioindication and phytoremediation potentialities of Phalaris arundinacea L. (reed canary grass). J Geochem Explor 146:27–33

    Article  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136

    CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees - a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Rieuwerts J, Farago M (1996) Heavy metal pollution in the vicinity of a secondary lead smelter in the Czech Republic. Appl Geochem 11:17–23

    Article  CAS  Google Scholar 

  • Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306

    Article  CAS  Google Scholar 

  • Roy M, McDonald LM (2015) Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degrad Dev 26:785–792

    Article  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Env Sci and Tec 41:168–214

    Article  Google Scholar 

  • Shi G, Cai Q (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27:555–561

    Article  CAS  Google Scholar 

  • Shi G, Liu C, Cui M, Ma Y, Cai Q (2012) Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl Biochem Biotech 168:163–173

    Article  CAS  Google Scholar 

  • Soudek P, Petrová Š, Vaňková R, Song J, Vaněk T (2014) Accumulation of heavy metals using Sorghum sp. Chemosphere 104:15–24

    Article  CAS  Google Scholar 

  • Šichorová K, Tlustoš P, Száková J, Kořínek K, Balík J (2004) Horizontal and vertical variability of heavy metals in the soil of a polluted area. Plant Soil Environ 50:525–534

    Article  Google Scholar 

  • Tlustoš P, Száková J, Hrubý J, Hartman I, Najmanová J, Nedělník J, Pavlíková D, Batysta M (2006) Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producting plants. Plant Soil Environ 52:413–423

    Article  Google Scholar 

  • Tlustoš P, Száková J, Vysloužilová M, Pavlíková D, Weger J, Javorská H (2007) Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willows Salix spp grown in contaminated soils. Cent Eur J Biol 2:254–275

    Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Vaněk A, Borůvka L, Drábek O, Mihaljevič M, Komárek M (2005) Mobility of lead, zinc, and cadmium in alluvial soils heavily polluted by smelting industry. Plant Soil Environ 51:316–321

    Article  Google Scholar 

  • Vaněk A, Ettler V, Grygar T, Borůvka L, Šebek O, Drábek O (2008) Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. Pedosphere 18:464–478

    Article  Google Scholar 

  • Vysloužilová M, Tlustoš P, Száková J (2003) Cadmium and zinc phytoextraction potential of seven clones of Salix spp planted on heavy metal contaminated soils. Plant Soil Environ 49:542–547

    Article  Google Scholar 

  • Wu F, Yang W, Zhang J, Zhou L (2010) Cadmium accumulation and growth responses of a poplar (Populus deltoides x Populus nigra) in cadmium contaminated purple soil and alluvial soil. J Hazarad Mater 177:268–273

    Article  CAS  Google Scholar 

  • Xian X, Shokohifard G (1989) Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils. Water Air Soil Pollut 45:265–273

    Article  CAS  Google Scholar 

  • Yang W, Zhao F, Zhang X, Ding Z, Wang Y, Zhu Z, Yang X (2015) Variations of cadmium tolerance and accumulation among 39 Salix clones: implication for phytoextraction. Environ Earth Sci 73:3263–3274

    Article  CAS  Google Scholar 

  • Zárubová P, Hejcman M, Vondráčková S, Mrnka L, Száková J, Tlustoš P (2015) Distribution of P, K, Ca, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements. Environ Sci Pollut Res 22:18801–18813

    Article  Google Scholar 

  • Zhao F, McGrath SP, Crosland AR (1994) Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectrometry ICP-AES. Commun Soil Sci Plant Anal 25:407–418

    Article  CAS  Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101:2063–2066

    Article  CAS  Google Scholar 

  • Zhivotovsky OP, Kuzovkina YA, Schulthess CP, Morris T, Pettinelli D (2011) Lead uptake and translocation by willows in pot and field experiment. Int J Phytoremediat 13:731–749

    Article  CAS  Google Scholar 

  • Žák K, Rohovec J, Navrátil T (2009) Fluxes of heavy metals from a highly polluted watershed during flood events: a case study of the Litavka River, Czech Republic. Water Air Soil Pollut 203:343–358

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Agriculture of the Czech Republic (Project No. RO0416) and the Ministry of Education, Youth and Sports (Project Nos. 2B08058, LD14106, and LD14107). We thank Raymond J. Marshall for language review of this artice. Dr. Marshall MD is a sixth generation Australian native born English speaker with 13 years experience teaching science subjects in the English Language at Comenius University, Natural Sciences Languages Faculty in Bratislava, Slovakia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markéta Mayerová.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayerová, M., Petrová, Š., Madaras, M. et al. Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops. Environ Sci Pollut Res 24, 14706–14716 (2017). https://doi.org/10.1007/s11356-017-9051-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9051-0

Keywords

Navigation