Skip to main content
Log in

Assessing ultraphytoplankton and heterotrophic prokaryote composition by flow cytometry in a Mediterranean lagoon

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the eutrophic Ghar El Melh Lagoon (GML, Tunisia), the distribution of heterotrophic prokaryotes, pico- and nanophytoplankton was studied at five stations in November 2012 at the single cell level, along with environmental factors. Flow cytometry analysis of ultraplankton (<10 μm) resolved (i) two heterotrophic prokaryote groups, low and high nucleic acid contents (LNA and HNA, respectively), and (ii) eight to nine ultraphytoplankton groups (cryptophyte-like cells, two nanoeukaryote subgroups, two picoeukaryote subgroups and three Synechococcus-like cells subgroups). Prochlorococcus was not detected. According to redundancy analysis (RDA), a significant difference was found in the distribution of the ultraplankton between stations (F = 2.61, p < 0.05); maximum proliferations of heterotrophic prokaryotes were observed in the inner parts of the lagoon at stations 3, 4 and 5 affected by urban, agricultural and industrial discharges. Ultraphytoplankton concentrations were the highest near the outlet of the lagoon at stations 1 and 2 influenced by freshwater outflow and oligotrophic Mediterranean water inflow, respectively. At station 1, the large ultraphytoplankton concentration derives from the high abundance of cryptophyte-like cells favoured by the freshwater outflow whereas at station 2, the input of oligotrophic Mediterranean water enhanced the abundance of Synechococcus and picoeukaryotes at the expense of nanoeukaryotes. Two trophic regimes were thus differentiated in GML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • (APHA) American Public Health Association (1992) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  • Agawin NSR, Duarte CM, Agustía L, McManus L (2003) Abundance, biomass and growth rates of Synechococcus sp. in a tropical coastal ecosystem (Philippines, South China Sea). Estuarine. Coastal and Shelf Science 56:493–502

    Article  Google Scholar 

  • Aleya L (1989) Seasonal couplings between adenyl nucleotides and photosynthetic activity of size-fractionated phytoplankton in a eutrophic lake. European Journal of Protistololgy 24:381–391

    Article  CAS  Google Scholar 

  • Aleya L, Amblard C (1989) Quantitative importance of different phytoplankton size-fraction in a eutrophic lake. Hydrobiologia 183:97–114

    Article  Google Scholar 

  • Aleya L, Dauta A, Reynolds CS (2011) Endogenous regulation of the growth-rate responses of a spring-dwelling strain of the freshwater alga, Chlorella minutissima, to light and temperature. Eur J Protistol 47:239–244

    Article  Google Scholar 

  • Allan GL, Moriarty DJW, Maguire GB (1995) Effects of pond preparation and feeding rate on production of Penaeus monodon fabricius, water quality, bacteria and benthos in model farming ponds. Aquaculture 130:329–349

    Article  Google Scholar 

  • Andrade L, Gonzalez AM, Araujo FV, Paranhos R (2003) Flow cytometry assessment of bacterioplankton in tropical marine environments. J Microbiol Methods 55:841–850

    Article  CAS  Google Scholar 

  • Ayache F, Thompson JR, Flower RJ, Boujarra A, Rouatbi F, Makina H (2009) Environmental characteristics, landscape history and pressures on three coastal lagoons in the Southern Mediterranean Region: Merja Zerga (Morocco), Ghar El Melh (Tunisia) and Lake Manzala (Egypt). Hydrobiologia 622:15–43

    Article  CAS  Google Scholar 

  • Balech E (1988) Los Dinoflagelados del Atlantico sudoccidental. Publicaciones Especiales Instituto Espan˜ol de Oceanografia 1:1–31

    Google Scholar 

  • Bec B, Collos Y, Souchu P, Vaquer A, Lautier J, Fiandrino A, Benau L, Orsoni V, Laugier T (2011) Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Aquat Microb Ecol 63:29–45

    Article  Google Scholar 

  • Ben Ismail S, Sammari C, Gasparini GP, Béranger K, Brahim M, Aleya L (2012) Water masses exchanged through the Channel of Sicily: evidence for the presence of new water masses on the Tunisian side of the channel. Deep-Sea Research I 63:65–81

    Article  Google Scholar 

  • Booth BC (1993) Estimating cell concentration and biomass of autotrophic plankton using microscopy. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton, pp 199–205

    Google Scholar 

  • Borderie F, Denis M, Barani A, Alaoui-Sossé B, Lotfi Aleya F (2016) Microbial composition and ecological features of phototrophic biofilms proliferating in the Moidons Caves (France): investigation at the single-cell level. Environ Sci Pollut Res 23:12039–12049

    Article  CAS  Google Scholar 

  • Bouvier T, del Giorgio PA, Gasol JM (2007) A comparative study of the cytometric characteristics of high and low nucleic-acid bacterioplankton cells from different aquatic ecosystems. Environ Microbiol 9:2050–2066

    Article  CAS  Google Scholar 

  • Burford MA, Thompson PJ, McIntosh RP, Bauman RH, Pearson DC (2003) Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture 219:393–411

    Article  Google Scholar 

  • Calvo-Díaz A, Anxelu X, Morán G (2008) Seasonality of picophytoplankton chlorophyll a and biomass in the central Cantabrian Sea, southern Bay of Biscay. J Mar Syst 72:271–281

    Article  Google Scholar 

  • Casotti R, Landolfi A, Brunet C, D’Ortenzio F, Mangoni O, Ribera d’Alcala M, Denis M (2003) Composition and dynamics of the phytoplankton of the Ionian Sea (eastern Mediterranean). J Geophys Res 108:8116. doi:10.1029/2002JC001541

    Article  Google Scholar 

  • Chakroun R, (2004) Réponse de la Macrofaune Invertébrée Benthique à l’Etat de De dégradation du Milieu: Cas du “Lac” Sud de Tunis et de la Lagune de Ghar El-Melh. Thesis, Université du 7 Novembre à Carthage, Faculté des Sciences de Bizerte, p. 341

  • Charles F, Lantoine F, Brugel S, Chrétiennot-Dinet MJ, Quiroga I, Rivière B (2005) Seasonal survey of the phytoplankton biomass, composition and production in a littoral NW Mediterranean site, with special emphasis on the picoplanktonic contribution. Estuar Coast Shelf Sci 65:199–212

    Article  Google Scholar 

  • Corliss JO (1961) The Ciliated Protozoa: characterization, classification and guide to the literature. Pergamon Press. London et New- York, p. 310

  • Denis M, Martin V, Momzikoff A, Gondry G, Stemmann L, Demers S, Gorsky G, Andersen V (2003) Pulsed remineralisation in the north western Mediterranean Sea: an hypothesis. J Mar Syst 39:19–41

    Article  Google Scholar 

  • Dhib A, Ben Brahim M, Ziadi B, Akrout F, Turki S, Aleya L (2013) Factors driving the seasonal distribution of planktonic and epiphytic ciliates in a eutrophicated Mediterranean Lagoon. Mar Pollut Bull 74:383–395

    Article  CAS  Google Scholar 

  • Dhib A, Fertouna-Bellakhal M, Turki S, Aleya L (2015) Harmful planktonic and epiphytic microalgae in a Mediterranean Lagoon: the contribution of the macrophyte Ruppia cirrhosa to microalgae dissemination. Harmful Algae 45:1–13

    Article  Google Scholar 

  • Dhib A, Denis M, Barani A, Turki S, Aleya L (2016) Ultra- and microplankton assemblages as indicators of trophic status in a Mediterranean lagoon. Ecol Indic 64:59–71

  • Dodge JD (1982) Marine dinoflagellates of the British Isles. Her Majesty’s Stationery Office, London, 303 p

    Google Scholar 

  • Dodge JD (1985) Atlas of dinoflagellates. Farrand Press, London, 119p

    Google Scholar 

  • Dussart B, 1967. Les copépodes des eaux continentales d’Europe occidentale. I. Calanoïdes et Harpacticoïdes. Boubée et Cie, Paris: 500 p

  • Giraudoux P (2012) Pgirmess: data analysis in ecology, http://perso.orange.fr/giraudoux

  • Glover HE, Smith AE, Shapiro L (1985) Diurnal variations in photosynthetic rates: comparisons of ultraphytoplankton with a larger phytoplankton size fraction. J Plankton Res 7:519–535

    Article  Google Scholar 

  • Goericke R, Welschmeyer NA (1993) The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep-Sea Res 40:2283–2294

    Article  Google Scholar 

  • Hamdi I, Denis M, Bellaaj-Zouari A, Khemakhem H, Bel Hassen M, Hamza A, Barani A, Bezac C, Maalej S (2015) Ultraphytoplankton characterisation and summer distribution in the Gulf of Gabès (eastern Mediterranean Sea, Tunisia) investigated by flow cytometry. Cont Shelf Res 93:27–38

    Article  Google Scholar 

  • Hannah FJ, Boney AD (1983) Nanophytoplankton in the Firth of Clyde, Scotland: seasonal abundance, carbon fixation and species composition. J Exp Mar Biol Ecol 67:105–147

    Article  CAS  Google Scholar 

  • Jacquet S, Havskum H, Thingstad TF, Vaulot D (2002) Effects of inorganic and organic nutrient addition on a coastal microbial community (Isefjord, Denmark). Marine Ecology and Progress Series 228:3–14

    Article  CAS  Google Scholar 

  • Lebaron P, Parthuisot N, Catala P (1998) Comparison of blue nucleic acid dyesfor flow cytometric enumeration of bacteria in aquatic systems. Appl Environ Microbiol 64:1725–1730

  • Lemonnier H, Courties C, Mugnier C, Torréton JP, Herbland A (2010) Nutrient and microbial dynamics in eutrophying shrimp ponds affected or unaffected by vibriosis. Mar Pollut Bull 60:402–411

    Article  CAS  Google Scholar 

  • Li WKW, Dickie PM, Irwin B, Wood M (1992) Biomass of bacteria, cyanobacteria, prochlorophytes and photosynthetic eukaryotes in the Sargasso Sea. Deep-Sea Res 39:501–519

    Article  Google Scholar 

  • Liu H, Chang J, Tseng CM, Wen LS, Liu KK (2007) Seasonal variability of picoplankton in the northern south China Sea at the SEATS station. Deep-Sea Research II 54:1602–1616

    Article  Google Scholar 

  • Malone TC (1980) Algal Size. In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell Scientific Publications, London, pp 1–625

    Google Scholar 

  • Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycleanalysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol 63:186–193

  • Martin V, 1997. Etude par cytométrie en flux de la distribution des populations phytoplanctoniques en Méditerranée. Mise en relation avec la production métabolique de CO2 et comparaison avec le Golfe du Saint Laurent. Thesis, Université de la Méditerranée

  • Martin AP, Zubkov MV, Burkill PH, Holland RJ (2005) Extreme spatial variability in marine picoplankton and its consequences for interpreting Eulerian time-series. Biol Lett 1:366–369

    Article  Google Scholar 

  • Martin AP, Zubkov MV, Burkill PH, Holland RJ (2008) Microbialspatial variability: an example from the Celtic Sea. Prog Oceanogr 76:443–465

    Article  Google Scholar 

  • Naselli-Flores L, Barone R (2012) Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance? Hydrobiologia 698:147–159

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet G, Kindt R, Legendre P, O’Hara R, Simpson G, Solymos P, Stevens H, Wagner H (2011) Vegan: community ecology package. R packageversion 1.17-11 http://CRAN.Rproject.org/package0vegan

  • Padisàk J, Crossetti L, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621:1–19

    Article  Google Scholar 

  • Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    CAS  Google Scholar 

  • Petz W (1999) Ciliophora. In: Boltovsky D (ed) South Atlantic zooplankton, vol 2. Backhuys Publishers, Leiden, pp 265–319

    Google Scholar 

  • Platt T, Rao DVS, Irwin B (1983) Photosynthesis of picoplankton in the oligotrophic ocean. Nature 300:702–704

    Article  Google Scholar 

  • Psarra S, Tselepides A, Ignatiades L (2000) Primary productivity in the Cretan Sea (NE Mediterranean): seasonal and interannual variability. Prog Oceanogr 46:187–204

    Article  Google Scholar 

  • Psarra S, Zohary T, Krom MD, Mantoura RFC, Polychronaki T, Stambler N, Tanaka T, Tselepides A, Thingstad TF (2005) Phytoplankton response to a Lagrangian phosphate addition in the Levantine Sea (eastern Mediterranean). Deep-Sea Research II 52:2944–2960

    Article  CAS  Google Scholar 

  • Quinones RA (1994) A comment on the use of allometry in the study of pelagic ecosystem processes. Sci Mar 58:11–16

    Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Rai H (1982) Primary production of various size fractions of natural phytoplankton communities in a north German lake. Archives für Hydrobiologie 95:395–412

    Google Scholar 

  • Ramdani M, Elkhiati N, Flower RJ, Thompson JR, Kraiem MM, Ayache F, Ahmed MH (2004) Environmental influences on the qualitative and quantitative composition of phytoplankton and zooplankton in North African coastal lagoons. Hydrobiologia 622:113–131

    Article  Google Scholar 

  • Ramsar (2007) The list of wetlands of international importance. Ramsar Bureau, Gland

    Google Scholar 

  • Rekik A, Denis M, Aleya L, Maalej S, Ayadi H (2012) Spring plankton community structure and distribution in the north and south coasts of Sfax (Tunisia) after north coast restoration. Mar Pollut Bull 67:82–93

    Article  Google Scholar 

  • Rekik A, Denis M, Dugenne M, Barani A, Maalej S, Ayadi H (2014) Seasonal distribution of ultraphytoplankton and heterotrophic prokaryotes in relation to abiotic variables on the north coast of Sfax after restoration. Mar Pollut Bull 84:280–305

    Article  CAS  Google Scholar 

  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428

    Article  Google Scholar 

  • Rodrigues RMNV, Williams PJLB (2002) Inorganic nitrogen assimilation by picoplankton and whole plankton in a coastal ecosystem. Limnol Oceanogr 47:160–1616

    Article  Google Scholar 

  • Rose M, (1933) Copépodes pélagiques. Faune de France 26, 372 p

  • SCET-ERI, 2000. Diagnostic de la situation actuelle, Etude de l’amélioration de la qualité des eaux dans la lagune de Ghar El Melh, phase I—partie III, (texte principale), Ministère de l’Agriculture, Direction Générale de la Pêche et d’Aquaculture

  • Siokou-Frangou I, Christaki U, Mazzocchi MG, Montresor M, Ribera d’Alcala M, Vaque D, Zingone A (2010) Plankton in the open Mediterranean Sea: a review. Biogeosciences 7:1543–1586

  • Sommaruga R, Robarts RD (1997) The significance of autotrophic and heterotrophic picoplankton in hypertrophic ecosystems. FEMS Microbiol Ecol 24:187–200

    Article  CAS  Google Scholar 

  • Sournia A, 1986. Atlas du phytoplancton marin. Cyanophycées, Dictyochophycées, Raphidophycées. Edition du CNRS. 219 p

  • Strüder-Kypke MC, Montagnes DJS (2002) Development of web-based guides to planktonic protists. Aquat Microb Ecol 27:203–207

    Article  Google Scholar 

  • Tomas CR, Hasle GR, Syvertsen EE, Steidinger KA, Tanger K, Throndsen J, Heimdal BR, 1996. In: Tomas, C. (Ed.), Identifying marine phytoplankton. Academic Press, San Diego, pp. 589

  • Torréton J-P, Rochelle-Newall E, Jouon A, Faure V, Jacquet S, Douillet P (2007) Correspondence between the distribution of hydrodynamic time parameters and the distribution of biological and chemical variables in a semi-enclosed coral reef lagoon. Estuar Coast Shelf Sci 74:766–776

    Article  Google Scholar 

  • Trégouboff G, Rose M (1957a) Manuel de planctonologie méiterranéenne, Vol II. CNRS, Paris, p 587

  • Trégouboff G, Rose M (1957b) Manuel de planctonologie méditerranéenne, Vol II. CNRS, Paris, p 592

  • Utermôhl H (1958) Zurvervolkommungder quantitativen phytoplankton Methodik. Mitteilungen der Internationale Vereinigung fur Theoretische und Angewandte Limnologie 9:1–38

    Google Scholar 

  • Vaquer A, Trousselier M, Courties C, Bibent B (1996) Standing stock and dynamics of picophytoplankton in the Thau Lagoon (nortwest Mediterranean coast). Limnol Oceanogr 41:1821–1828

    Article  Google Scholar 

  • Vidussi F, Claustre H, Manca BB, Luchetta A, Marty JC (2001) Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J Geophys Res 106:19939–19956

    Article  Google Scholar 

  • Weisse T (1993) Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In: Jones JG (ed) Advances in microbial ecology. Plenum Press, New York, pp 327–370

    Chapter  Google Scholar 

  • Worden AZ, Nolan JK, Palenik B (2004) Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol Oceanogr 49:168–179

    Article  CAS  Google Scholar 

  • Ziadi B, Dhib A, Turki S, Aleya L (2014) Bivalve and barnacle larvae distribution driven by water temperature in a Mediterranean lagoon. Environ Sci Pollut Res 22:7002–7011

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted by Amel DHIB as a part of her PhD research (co-directed at the University of Franche-Comté, CNRS 6249, Besançon, France, and at the Institut National des Sciences et Technologie de la Mer, Tunisia). The authors thank Serge Nitsche, head of the SEM facility at the Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), for providing access to SEM and for his helpful assistance. We thank the anonymous reviewers whose comments have helped to greatly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Aleya.

Ethics declarations

No humans or animals were the subject of experiments. All authors agree for the ethics for publication.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhib, A., Denis, M., Ziadi, B. et al. Assessing ultraphytoplankton and heterotrophic prokaryote composition by flow cytometry in a Mediterranean lagoon. Environ Sci Pollut Res 24, 13710–13721 (2017). https://doi.org/10.1007/s11356-017-8939-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8939-z

Keywords

Navigation