Skip to main content

Advertisement

Log in

Effects of biochar on enhanced nutrient use efficiency of green bean, Vigna radiata L.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biochar is the carbonized material produced from biomass and is used in several environmental applications. The biochar characteristics depend on the carbonization conditions and feedstock. The suitability of a given biochar for soil improvement depends on the biochar characteristics, soil properties, and target plants. Biochar has been applied at 1–20% (w/w) in the soil, but currently there is a lack of information on what type and concentration of biochar are most suitable for a specific plant and soil quality. Too much biochar will reduce plant growth because of the high alkalinity of biochar, which will cause long-term soil alkalinity. In contrast, too little biochar might be insufficient to enhance plant productivity. In this study, a suitable concentration of cassava stem (an abundant agricultural waste in Thailand) biochar produced at 350 °C was evaluated for green bean (Vigna radiata L.) growth from germination to seed production in pots over 8 weeks. The soil fertility was increased with increasing biochar concentration. At 5% (w/w) biochar, the soil fertility and plant growth were significantly enhanced, while 10% (w/w) biochar significantly enhanced bean growth and bean pod production. The increased biochar concentration in the soil significantly increased the soil total nitrogen and extractable potassium (K) levels but did not affect the amount of available phosphorous. Biochar at 10% (w/w) significantly induced the accumulation of K in the stems, leaves, nut shells, and roots but not in nut seeds. Moreover, biochar not only increased the K concentration in soil but also increased the plant nutrient use efficiency of K, which is important for plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agegnehua G, Nelsona PN, Birda MI (2016) Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil Tillage Res 160:1–13

    Article  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176. doi:10.1016/j.plaphy.2012.11.024

    Article  CAS  Google Scholar 

  • Ameloot N, Sleutel S, Das KC, Kanagaratnam J, DeNeve S (2013) Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties. GCB Bioenergy. doi:10.1111/gcbb.12119

    Google Scholar 

  • Atilio JB, Causin HF (1996) The central role of amino acids on nitrogen utilization and plant growth. J Plant Physiol 149:358–362. doi:10.1016/S0176-1617(96)80134-9

    Article  Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2007) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950. doi:10.1081/CSS-100104098

    Article  Google Scholar 

  • Bass AM, Bird MI, Kay G, Muirhead B (2016) Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Sci Total Environ 550:459–470

    Article  CAS  Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214. doi:10.1111/gcbb.12037

    Article  CAS  Google Scholar 

  • Bolan N et al (2014) Review remediation of heavy metal(loid)s contaminated soils: to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  Google Scholar 

  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428. doi:10.1016/j.biortech.2011.11.084

    Article  CAS  Google Scholar 

  • Chia J, Liu H (2016) Effects of biochars derived from different pyrolysis temperatures ongrowth of Vallisneria spiralis and dissipation of polycyclic aromatichydrocarbons in sediments. Ecol Eng 93:199–206

    Article  Google Scholar 

  • DeLuca TH, MacKenzie MD, Gundale MJ (2009) Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, UK, pp 251–270

    Google Scholar 

  • DeSmet I et al (2012) Analyzing lateral root development: how to move forward. Plant Cell 24:15–20

    Article  CAS  Google Scholar 

  • Ding Y et al. (2016) Biochar to improve soil fertility. A review Agronomy for Sustainable Development 36:36 doi:10.1007/s13593-016-0372-z

  • Dobermann A, Cassman KG, Sta. Cruz PC, Adviento MAA, Pampolino MF (1996) Fertilizer inputs, nutrient balance and soil nutrient supplying power in intensive, irrigated rice system. III Phosphorus. Nutr Cycl Agroecosyst 46:111–125. doi:10.1007/BF00704311

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC (2005) Enhancing nitrogen use efficiency in crop plants. In: Advances in agronomy, vol Volume 88. Academic Press, pp 97-185. doi:http://dx.doi.org/10.1016/S0065-2113(05)88004-6

  • Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–633

    Article  CAS  Google Scholar 

  • Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, Lun DS (2011) Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods 7:1–11. doi:10.1186/1746-4811-7-2

    Article  Google Scholar 

  • Hao Z, Zhengyu W, Xia D, Baoshan X (2013) Impact of pyrolysis temperature on nutrient properties of biochar. In: Xu J, Wu J, He Y (eds) Functions of natural organic matter in changing environment. Springer Netherlands, Netherlands, pp 975–978. doi:10.1007/978-94-007-5634-2_179

    Google Scholar 

  • Ibrahim EA, Ramadan WA (2015) Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci Hortic 184:101–105. doi:10.1016/j.scienta.2014.11.010

    Article  CAS  Google Scholar 

  • Ingold M, Al-Kindi A, Jordan G, Dietz H, Schlecht E, Buerkert A (2015) Effects of activated charcoal and quebracho tannins added to feed or as soil conditioner on manure quality in organic agriculture. Org Agric 5:245–261. doi:10.1007/s13165-015-0104-8

    Article  Google Scholar 

  • Jien S-H, Wang C-S (2013) Effects of biochar on soil properties and erosion potential in a highly weathered soil. CATENA 110:225–233. doi:10.1016/j.catena.2013.06.021

    Article  CAS  Google Scholar 

  • Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T (2014) Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11:6613–6621. doi:10.5194/bg-11-6613-2014

    Article  Google Scholar 

  • Karer J, Wimmer B, Zehetner F, Kloss S, Soja G (2013) Biochar application to temperate soils: effect on nutrient uptake and crop yield under field conditions. Agric Food Sci 22:390–403

    Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449. doi:10.1016/j.geoderma.2010.05.013

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan Publishers, London, United Kingdom, p 12

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836. doi:10.1016/j.soilbio.2011.04.022

    Article  CAS  Google Scholar 

  • Liu Z, Hoekman SK, Balasubramanian R, Zhang F-S (2015) Improvement of fuel qualities of solid fuel biochars by washing treatment. Fuel Process Technol 134:130–135. doi:10.1016/j.fuproc.2015.01.025

    Article  CAS  Google Scholar 

  • Mclatchey GP, Reddy KR (1998) Regulation of organic matter decomposition and nutrient release in a wet soil. J Environ Qual 27:1268–1274

    Article  CAS  Google Scholar 

  • Mukherjee A, Zimmerman AR (2013) Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 193–194:122–130

    Article  Google Scholar 

  • Omondi MO, Xia X, Nahayo A, Liu X, Korai PK, Pan G (2016) Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 274:28–34. doi:10.1016/j.geoderma.2016.03.029

    Article  CAS  Google Scholar 

  • Oram NJ, van de Voorde TFJ, Ouwehand G-J, Bezemer TM, Mommer L, Jeffery S, Groenigen JWV (2014) Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agr Ecosyst Environ 191:92–98. doi:10.1016/j.agee.2014.03.031

    Article  CAS  Google Scholar 

  • Park JH, Choppala G, Bolan N, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451

    Article  CAS  Google Scholar 

  • Prapagdee S, Piyatiratitivorakul S, Petsom A, Tawinteung N (2014) Application of biochar for enhancing cadmium and zinc phytostabilization in Vigna radiata L cultivation. Water Air Soil Pollut 225:1–13

    Article  CAS  Google Scholar 

  • Rees F, Simonnot MO, Morela JL (2014) Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur J Soil Sci 65:149–161

    Article  CAS  Google Scholar 

  • Regmi P, Moscoso JLG, Kumar S, Cao X, Mao J, Schafran G (2012) Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manage 109:61–69

    Article  CAS  Google Scholar 

  • Rondon MA, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:699–708

    Article  Google Scholar 

  • Rosolem CA, Silva RH, Esteves JAF (2003) Potassium supply to cotton roots as affected by potassium fertilization and liming. Pesq Agrop Brasileira 38:635–641

    Google Scholar 

  • Roy RC, Coelho BRB, Reeleder RD, Bruin AJ, Grohs R, White P, Capell B (2008) Effect of planting bed shape, mulch and soil density on root yield and shape in North American ginseng (Panax quinquefolius L.). Can J Plant Sci 88:937–949

    Article  Google Scholar 

  • Schulz H, Glaser B (2012) Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutr Soil Sci 174:410–422

    Article  Google Scholar 

  • Segura ML, París JIC, Plaza BM, Lao MT (2012) Assessment of the nitrogen and potassium fertilizer in green bean irrigated with disinfected urban wastewater. Commun Soil Sci Plant Anal 43:426–433. doi:10.1080/00103624.2011.638604

    Article  CAS  Google Scholar 

  • Shashidhar HE, Henry A, Hardy B (2012) Methodologies for root drought studies in rice. IRRI, International Rice Research Institute, Manila, Philipines

    Google Scholar 

  • Suppadit T, Kitikoon V, Phubphol A, Neumnoi P (2012) Effect of quali litter biochar on productivity of four new physic nut varieties planted in cadmium-contaminated soil Chilean Journal of Agricultural Research 72:125-132.

  • Trakal L, Sigut R, Sillerova H, Faturikova D, Komarek M (2014) Copper removal from aqueous solution using biochar: effect of chemical activation. Arab J Chem 7:43–52

    Article  CAS  Google Scholar 

  • Uchimiya M, Lima IM, Klasson KT, Chang S, Wartelle LH, Rodgers JE (2010) Immobilization of heavy metal ions (Cu, Cd, Ni, and Pb) by broiler litter-derived biochars in water and soil. J Agric Food Chem 58:5538–5554

    Article  CAS  Google Scholar 

  • Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59:2501–2510

    Article  CAS  Google Scholar 

  • Upadhyay KP, George D, Swift RS, Galea V (2014) The influence of biochar on growth of lettuce and potato. J Integr Agric 13:541–546

    Article  Google Scholar 

  • Xu CY, Hosseini-Bai S, Hao Y, Rachaput RCN, Wang HL, Xu Z, Wallace H (2015) Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environ Sci Pollut Res 22:6112–6125

    Article  CAS  Google Scholar 

  • Zhang H, Voroney RP, Price GW (2014a) Effects of biochar amendments on soil microbial biomass and activity. J Environ Qual 43:2104–2114. doi:10.2134/jeq2014.03.0132

    Article  CAS  Google Scholar 

  • Zhang Q-z, Dijkstra FA, X-r L, Wang Y-d, Huang J, Lu N (2014b) Effects of biochar on soil microbial biomass after four years of consecutive application in the north China plain. PLoS One 9, e102062. doi:10.1371/journal.pone.0102062

    Article  Google Scholar 

  • Zheng H, Wang Z, Deng X, Herbert S, Xing B (2013) Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206:32–39

    Article  CAS  Google Scholar 

  • Zwieten LV, Rose T, Herridge D, Kimber S, Rust J, Cowie A, Morris S (2015) Enhanced biological N2 fixation and yield of faba bean (Vicia faba L.) in an acid soil following biochar addition: dissection of causal mechanisms. Plant Soil 395:7–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songkrit Prapagdee.

Additional information

Responsible editor: Zhihong Xu

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prapagdee, S., Tawinteung, N. Effects of biochar on enhanced nutrient use efficiency of green bean, Vigna radiata L.. Environ Sci Pollut Res 24, 9460–9467 (2017). https://doi.org/10.1007/s11356-017-8633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8633-1

Keywords

Navigation