Skip to main content
Log in

Removal of gadolinium-based contrast agents: adsorption on activated carbon

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Three carbon samples were employed in this work, including commercial (1690 m2 g−1), activated carbon prepared from guava seeds (637 m2 g−1), and activated carbon prepared from avocado kernel (1068 m2 g−1), to study the adsorption of the following gadolinium-based contrast agents (GBCAs): gadoterate meglumine Dotarem®, gadopentetate dimeglumine Magnevist®, and gadoxetate disodium Primovist®. The activation conditions with H3PO4 were optimized using a Taguchi methodology to obtain mesoporous materials. The best removal efficiency by square meter in a batch system in aqueous solution and model urine was achieved by avocado kernel carbon, in which mesoporosity prevails over microporosity. The kinetic adsorption curves were described by a pseudo-second-order equation, and the adsorption isotherms in the concentration range 0.5–6 mM fit the Freundlich equation. The chemical characterization of the surfaces shows that materials with a greater amount of phenolic functional groups adsorb the GBCA better. Adsorption strongly depends on the pH due to the combination of the following factors: contrast agent protonated forms and carbon surface charge. The tested carbon samples were able to adsorb 70–90% of GBCA in aqueous solution and less in model urine. This research proposes a method for the elimination of GBCA from patient urine before its discharge into wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen SJ, Mckay G, Porter JF (2004) Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J Colloid Interface Sci 280:322–333

    Article  CAS  Google Scholar 

  • Alvares Rodrigues L, Caetano Pinto da Silva ML, Alvarez-Mendes MO, dos Reis Coutinho A, Patrocínio Thim G (2011) Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem Eng J 174:49–57

    Article  Google Scholar 

  • Bandosz TJ, Jagiello J, Contescu C, Schwarz JA (1993) Characterization of the surfaces of activated carbons in terms of their acidity constant distribution. Carbon 31:1193–1202

    Article  CAS  Google Scholar 

  • Barbosa-Martín E, Chel-Guerrero L, González-Mondragón E, Betancur-Ancona D (2016) Chemical and technological properties of avocado (Persea americana Mill.) seed fibrous residues. Food. Bioprod. Process 100:457–463

    Google Scholar 

  • Benaddi H, Bandosz TJ, Jagiello J, Schwarz JA, Rouzaud JN, Legras D, Béguin F (2000) Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon 38:669–674

    Article  CAS  Google Scholar 

  • Benjamin MM, Leckie JO (1981) Conceptual model for metal-ligand-surface interactions during adsorption. Environ Sci Technol 15:1050–1057

    Article  CAS  Google Scholar 

  • Birka M, Wehe CA, Hachmöller O, Sperling M, Karst U (2016) Tracing gadolinium-based contrast agents from surface water to drinking water by means of speciation analysis. J Chromatogr A 1440:105–111

    Article  CAS  Google Scholar 

  • Birka M, Wehe CA, Telgmann L, Sperling M, Uwe K (2013) Sensitive quantification of gadolinium-based magnetic resonance imaging contrast agents in surface waters using hydrophilic interaction liquid chromatography and inductively coupled plasma sector field mass spectrometry. J Chromatogr A 1308:125–131

    Article  CAS  Google Scholar 

  • Birka M, Wentker KS, Lusmöller E, Arheilger B, Wehe CA, Sperling M, Stadler R, Karst U (2015) Diagnosis of nephrogenic systemic fibrosis by means of elemental Bioimaging and speciation analysis. Anal Chem 87:3321–3328

    Article  CAS  Google Scholar 

  • Brudey T, Largitte L, Jean-Marius C, Tant T, Couespel Dumesnil P, Lodewyckx P (2016) Adsorption of lead by chemically activated carbons from three lignocellulosic precursors. J Anal Appl Pyrol 120:450–463

    Article  CAS  Google Scholar 

  • Choppin GR, Schaab KM (1996) Lanthanide (III) complexation with ligands as possible contrast enhancing agents for MRI. Inorg Chim Acta 252:299–310

    Article  CAS  Google Scholar 

  • Clugstone M, Flemming R (2000) Advanced chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Cox BG (2013) Acids and bases: solvent effects on acid-base strenght. Oxford University Press, Oxford

    Book  Google Scholar 

  • Cyris M 2013: Behavior of gadolinium-based diagnostics in water treatment, University of Duisburg-Essen, Essen, DE., 171 pp

  • Dávila-Jiménez MM, Elizalde-González MP, García-Díaz E, González-Perea M, Guevara-Villa MRG (2014) Using Akaike information criterion to select the optimal isotherm equation for adsorption from solution. Adsorpt Sci Technol 32:605–622

    Article  Google Scholar 

  • Dávila-Jiménez MM, Elizalde-González MP, García-Díaz E, Marín-Cevada V, Zequineli-Pérez J (2015) Photodegradation of the anthraquinonic dye acid green 25 by TiO2 immobilized on carbonized avocado kernels: intermediates and toxicity. Appl Catal B-Environ 166-167:241–250

    Article  Google Scholar 

  • Elizalde González MP, Dávila Jiménez MM, Ornelas Dávila O (2011): Proceso para obtener un adsorbente a partir de un material de desecho y uso del adsorbente. Pat. ES2356765, 9 diciembre 2011.

  • Elizalde González MP, Dávila Jiménez MM, Ornelas Dávila O (2013): Process for obtaining an adsorbent from a waste material and use of the adsorbent. Pat. US 8,501,663 B2, August 6, 2013

  • Elizalde González MP, Dávila Jiménez MM, Ornelas Dávila O (2014): Proceso para obtener un adsorbente a partir de un Material de desecho y uso del adsorbente. Pat. MX320379, 21 Mayo 2014

  • Elizalde González MP, Dávila Jiménez MM, Ornelas Dávila O (2015): Process for obtaining an adsorbent from avocado waste and use of the adsorbent. Pat. US 9,174,857B2. November 3, 2015

  • Elizalde-González MP, García-Díaz LE (2010) Application of a Taguchi L16 orthogonal array for optimizing the removal of acid Orange 8 using carbon with a low specific surface area. Chem Eng J 163:55–61

    Article  Google Scholar 

  • Elizalde-González MP, Hernández-Montoya V (2009) Guava seed as an adsorbent and as a precursor of carbon for the adsorption of acid dyes. Bioresourse Technol 100:2111–2117

    Article  Google Scholar 

  • Elizalde-González MP, Mattusch J, Peláez-Cid AA, Wennrich R (2007) Characterization of adsorbent materials prepared from avocado kernel seeds: natural, activated and carbonized forms. J Anal Appl Pyrolysis 78:185–193

    Article  Google Scholar 

  • FAO (2003): Medium-term prospects for agricultural commodities. Proyections to the year 2010. In: Department EaSD (Hrsg.). FAO Corporate Document Repository. Publishing Management Service, Rome, Italy

  • Faria PCC, Órfão JJM, Pereira MFR (2004) Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res 38:2043–2052

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Fuente E, Menéndez JA, Díez MA, Suárez D, Montes-Morán MA (2003) Infrared spectroscopy of carbon materials: a quantum chemical study of model compounds. J Phys Chem B 107:6350–6359

    Article  CAS  Google Scholar 

  • Giles CH, MacEwan TH, Nakwa SN, Smith D (1960): Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurements of specific surface areas of solids. J. Chem. Soc., 3973–3993

  • Goullé J-P, Saussereau E, Mahieu L, Cellier D, Spiroux J, Guerbet M (2012) Importance of anthropogenic metals in hospital and urban wastewater: its significance for the environment. Bull Environ Contam Toxicol 89:1220–1224

    Article  Google Scholar 

  • Hermann P, Kotek J, Kubícek V, Lukes I (2008) Gadolinium(III) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalton Trans 23:3027–3047

    Article  Google Scholar 

  • Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

  • Kiselev AV (1965) Non-specific and specific interactions of molecules of different electronic structures with solid surfaces. Discuss Faraday Soc 40:205–218

    Article  Google Scholar 

  • Kulaksız S, Bau M (2011) Anthropogenic gadolinium as a microcontaminant in tap water used as drinking water in urban areas and megacities. Appl Geochem 26:1877–1885

    Article  Google Scholar 

  • Lawrence MG, Keller J, Poussade Y (2010) Removal of magnetic resonance imaging contrast agents through advanced water treatment plants. Water Sci Technol 61:685–692

    Article  CAS  Google Scholar 

  • Lingott J, Lindner U, Telgmann L, Esteban-Fernández D, Jakubowski N, Panne U (2016) Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry. Environ Sci: Process impacts 18:200–207

    CAS  Google Scholar 

  • López-Ramón V, Moreno-Castilla C, Rivera-Utrilla J, Radovic LR (2002) Ionic strength effects in aqueous phase adsorption of metal ions on activated carbons. Carbon 41:2009–2025

    Google Scholar 

  • Lowell S, Shields JE, Thomas MA, Thommes M (2004): Characterization of porous solid and powders: surface area, pore size and density. Particle technology series. Springer, Dordrecht, The Netherlands

  • Meldrum BJ, Rochester CH (1990) In situ infrared study of the surface oxidation of activated carbon in oxygen and carbon dioxide. J Chem Soc Faraday Trans 86:861–865

    Article  Google Scholar 

  • Milic N, Preradovic N, Milosevic N, Vucaj CV, Till V (2014) Gadolinium-based imaging contrast agents. Curr Med Imaging Rev 10:140–150

    Article  CAS  Google Scholar 

  • Montes-Morán MA, Suárez D, Menéndez JA, Fuente E (2012) The basicity of carbons. In: JMD T (ed) Novel carbon adsorbents. Elsevier, Oxford, pp 173–203

    Chapter  Google Scholar 

  • Neubert C, Länge R, Steger-Hartmann T (2008) Gadolinium containing contrast agents for magnetic resonance imaging (MRI): investigations on the environmental fate and effects. In: Aga DS (ed) Fate of pharmaceuticals in the environmental and in water treatment systems. Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  • Pezoti O, Cazetta AL, Bedin KC, Souza LS, Martins AC, Silva TL, Santos Júnior OO, Visentainer JV, Almeida VC (2016) NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies. Chem Eng J 288

  • Plazinski W, Dziuba J, Rudzinski W (2013) Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption 19:1055–1064

    Article  CAS  Google Scholar 

  • Polasek M, Caravan P (2013) Is macrocycle a synonym for kinetic inertness in Gd(III) complexes? Effect of coordinating and Noncoordinating substituents on inertness and Relaxivity of Gd(III) chelates with DO3A-like ligands. Inorg Chem 52:4084–4096

    Article  CAS  Google Scholar 

  • Putnam DF 1969: Composition and concentrative properties of human urine, McDonnell Douglas Astronautics Company - Western Division, Huntington Beach, Calif.

  • Qadeer R, Hanif J, Saleem M, Afzal M (1992) Adsorption of gadolinium on activated charcoal from electrolytic aqueous solution. J Radioanal Nucl Chem 159:155–165

    Article  CAS  Google Scholar 

  • Ross PJ (1996) Taguchi techniques for quality engineering loss function, orthogonal experiments, parameter and tolerance design. McGraw-Hill, Singapore

    Google Scholar 

  • Schmitt-Willich H, Brehm M, Ewers CLJ, Michl G, Müller-Fahrnow A, Petrov O, Platzek J, Radüchel B, Sülzle D (1999) Synthesis and physicochemical characterization of a new gadolinium chelate: the liver-specific magnetic resonance imaging contrast agent Gd-EOB-DTPA. Inorg Chem 38:1134–1144

    Article  CAS  Google Scholar 

  • Secretaría de Agricultura G, Desarrollo Rural, Pesca y Alimentación (2017): Aumenta 8.2 por ciento producción de guayaba en México en el último trienio. In: Prensa (Hrsg.), Ciudad de México

  • Telgmann L, Sperling M, Karst U (2013) Determination of gadolinium-based MRI contrast agents in biological and environmental samples: a review. Anal Chim Acta 764:1–16

    Article  CAS  Google Scholar 

  • Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  • Verlicchi P, Galletti A, Petrovic M, Barceló D (2010) Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol 389:416–428

    Article  CAS  Google Scholar 

  • Yahya MA, Al-Qodah Z, Ngah CWZ (2015) Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sust Energ Rev 46:218–235

    Article  CAS  Google Scholar 

  • Yantasee W, Fryxell GE, Addleman RS, Wiacek RJ, Koonsiripaiboon V, Pattamakomsan K, Sukwarotwat V, Xu J, Raymond KN (2009) Selective removal of lanthanides from natural waters, acidic streams and dialysate. J Hazard Mater 168:1233–1238

    Article  CAS  Google Scholar 

  • Yantasee W, Fryxell GE, Porter GA, Pattamakomsan K, Sukwarotwat V, Chouyyok W, Koonsiripaiboon V, Xu J, Raymond KN (2010) Novel sorbents for removal of gadolinium-based contrast agents in sorbent dialysis and hemoperfusion: preventive approaches to nephrogenic systemic fibrosis. Nanomed-Nanotechnol 6:1–8

    Article  CAS  Google Scholar 

  • Zhang B, Liang L, Chen W, Liang C, Zhang S (2015) An updated study to determine association between gadolinium-based contrast agents and nephrogenic systemic fibrosis. PLoS One 10:1–15

    Google Scholar 

Download references

Acknowledgements

The authors thank César Nieto (IPICyT, Mexico) for discussions on the protonation of DOTA and Patricia Ruíz (CQ-ICUAP, Mexico) for performing the determination of the functional groups. The current work was supported by CONACyT(Mexico)-DAAD-PROALMEX (Germany) 2014 (165431) and VIEP-UAP (ELGM-NAT00049-2014) research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmeralda García-Díaz.

Additional information

Responsible editor: Guilherme Dotto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elizalde-González, M.P., García-Díaz, E., González-Perea, M. et al. Removal of gadolinium-based contrast agents: adsorption on activated carbon. Environ Sci Pollut Res 24, 8164–8175 (2017). https://doi.org/10.1007/s11356-017-8491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8491-x

Keywords

Navigation