Skip to main content

Advertisement

Log in

Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: A review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Arsenic (As) is a toxic metalloid. Serious concerns have been raised in literature owing to its potential toxicity towards living beings. The metalloid causes various water- and food-borne diseases. Among food crops, rice contains the highest concentrations of As. Consuming As-contaminated rice results in serious health issues. Arsenic concentration in rice is governed by various factors in the rhizosphere such as availability and concentration of various mineral nutrients (iron, phosphate, sulfur and silicon) in soil solution, soil oxidation/reduction status, inter-conversion between organic and inorganic As compounds. Agronomic and civil engineering methods can be adopted to decrease As accumulation in rice. Agronomic methods such as improving soil porosity/aeration by irrigation management or creating the conditions favorable for As-precipitate formation, and decreasing As uptake and translocation by adding a inorganic nutrients that compete with As are easy and cost effective techniques at field scale. This review focuses on the factors regulating and competing As in soil-plant system and As accumulation in rice grains. Therefore, it is suggested that judicious use of water, management of soil, antagonistic effects of various inorganic plant-nutrients to As should be considered in rice cultivated areas to mitigate the building up of As in human food chain and with minimum negative impact to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

As:

Arsenic

As(III):

Arsenite

As(V):

Arsenate

AsB:

Arsenobetaine

AtINT:

Arabidopsis inositol transporters

ATSDR:

Agency for Toxic Substances and Disease Registry

DMA:

Dimethylarsinic acid

FAO:

Food and Agriculture Organization

Fe:

Iron

μg kg-1 :

microgram per kilogram

mg kg-1 :

milligram per kilogram

MMA:

Monomethylarsonic acid

P:

Phosphorus

pKa:

acid dissociation constant

PO4 :

Phosphate

QTL:

Quantitative trait loci

S:

Sulphur

Si:

Silicon

SMOs:

Soil microorganisms

SO4 :

Sulfate

T:

Tones

U.S. FDA:

United State Food and Drug Administration

WHO:

World Health Organization

References

  • Abedin MJ, Cresser MS, Meharg AA, Feldmann J, Cotter-Howells J (2002a) Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol 36:962–968

  • Abedin MJ, Feldmann J, Meharg AA (2002b) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

  • Acevedo F, Gentina JC, Garcia N (1998) CO2 supply in the biooxidation of an enargite–pyrite gold concentrate. Bio Technol Lett 20(3):257–259

    CAS  Google Scholar 

  • Adomako EE, Williams PN, Deacon C, Mehrag AA (2011) Inorganic arsenic and trace elements in Ghanaian grain staples. Environ pollut 159:2435–2442

  • Adress M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanism of silicon-mediated alleviation of heavy metals in plants: A review. Ecotoxicol Environ Saf 119:186–197. doi:10.1016/j.ecoenv.2015.05.011

    Article  CAS  Google Scholar 

  • Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S (2009) Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol 43:9361–9367. doi:10.1021/es9022738

    Article  CAS  Google Scholar 

  • Armstrong W (1964) Oxygen diffusion from the roots of some British Bog plants. Nature 204:801–802. doi:10.1038/204801b0

    Article  CAS  Google Scholar 

  • Armstrong W (1967) The oxidizing activity of roots in waterlogged soils. Physiol Plant 20:920–926. doi:10.1111/j.1399-3054.1967.tb08379.x

    Article  CAS  Google Scholar 

  • Azad MAK, Mondal A, Hossain MI, Moniruzzaman M (2012) Effect of arsenic amended irrigation water on growth and yield of BR-11 rice (Oryza sativa L.) grown in open field gangetic soil condition in Rajshahi. J Environ Sci Nat Resour 5(1):55–59. doi:10.3329/jesnr.v5i1.11553

    Google Scholar 

  • Azad MAK, Monda AHMFK, Hossain I, Moniruzzaman M (2013) Experiment for Arsenic Accumulation into Rice Cultivated with Arsenic Enriched Irrigation Water in Bangladesh. American J Environ Protection 1(3):54–58

  • Ballatori N (2002) Transport of toxic metals by molecular mimicry. Environ Health Perspect 110:689–694. doi:10.1289/ehp.02110s5689

    Article  CAS  Google Scholar 

  • Banerjee M, Banerjee N, Bhattacharjee P, Mondal D, Lythgoe PR, Martínez M, Pan J, Polya DA, Giri AK (2013) High arsenic in rice is associated with elevated genotoxic effects in humans. Sci Rep 3:2195. doi:10.1038/srep02195

    Google Scholar 

  • Batista BL, Souza JMO, De Souza SS, Barbosa F (2011) Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. J Hazard Mater 191:342–348. doi:10.1016/j.jhazmat.2011.04.087

    Article  CAS  Google Scholar 

  • Bhattacharya P, Samal AC, Majumdar J, Santra SC (2009) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy Water Environ 8:63–70

  • Bhattacharya P, Samal AC, Majumdar J, Santra SC (2010) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal. India Paddy Water Environ 8:63–70. doi:10.1007/s10333-009-0180-z

    Article  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ et al (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26. doi:10.1186/1741-7007-6-26

    Article  CAS  Google Scholar 

  • Bogdan K, Schenk MK (2008) Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environ Sci Technol 42:7885–7890. doi:10.1021/es801194q

    Article  CAS  Google Scholar 

  • Bogdan K, Schenk MK (2009) Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.). Environ Pollut 157:2617–2621. doi:10.1016/j.envpol.2009.05.008

    Article  CAS  Google Scholar 

  • Bolan N, Mahimairaja S, Kunhikrishnan A, Choppala G (2013) Phosphorus-arsenic interactions in variable-charge soils in relation to arsenic mobility and bioavailability. Sci Total Environ 463-464:1154–1162. doi:10.1016/j.scitotenv.2013.04.016

    Article  CAS  Google Scholar 

  • Cai K, Gao D, Chen J, Luo S (2009) Probing the mechanisms of silicon-mediated pathogen resistance. Plant Signal Behav 4:1–3. doi:10.4161/psb.4.1.7280

    Article  CAS  Google Scholar 

  • Campos GER, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS (2002) Muscular adaptations in response to three different resistance-training regimens: Specificity of repetition maximum training zones. Eur J Appl Physiol 88:50–60. doi:10.1007/s00421-002-0681-6

    Article  Google Scholar 

  • Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA (2010) Grain unloading of arsenic species in rice. Plant Physiol 152:309–319. doi:10.1104/pp.109.146126

    Article  CAS  Google Scholar 

  • Carey AM, Norton GJ, Deacon C, Scheckel KG, Lombi E, Punshon T, Guerinot ML, Lanzirotti A, Newville M, Choi Y, Price AH, Meharg AA (2011) Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol 192:87–98. doi:10.1111/j.1469-8137.2011.03789.x

  • Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133. doi:10.1105/tpc.106.041871

    Article  CAS  Google Scholar 

  • Chan WF, Li H, Wu FY et al (2013) Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J Hazard Mater 262:1116–1122. doi:10.1016/j.jhazmat.2012.08.020

    Article  CAS  Google Scholar 

  • Chen XW, Wu FY, Li H, Chan WF, Wu C, Wu SC et al (2013) Phosphate transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenate stress. Environ Exp Bot 87:92–99. doi:10.1016/j.envexpbot.2012.08.002

    Article  CAS  Google Scholar 

  • Corkhill CL, Wincott PL, Lloyd JR, Vaughan DJ (2008) The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans. Geochim Cosmochim Acta 72(23):5616–5633

    Article  CAS  Google Scholar 

  • Das DK, Sur P, Das K (2008) Mobilization of arsenic in soils and in rice (Oryza sativa L.) plants affected by organic matter and zinc application in irrigation water contaminated with arsenic. Plant Soil Environ 54:30–37

    CAS  Google Scholar 

  • Delowar HKM, Yoshida I, Harada M, Sarkar AA, Miah MNH, Razzaque AHM, Uddin MI, Adhana K, Perveen MF (2005) Growth and uptake of arsenic by rice irrigated with As-contaminated water. J Food Agric Environ 3:287–291

    CAS  Google Scholar 

  • Dittmar J, Voegelin A, Roberts LC, Hug SJ, Saha GC, Ali MA, Badruzzaman BM, Kretzschmar R (2007) Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy Soil. Environ Sci. Technol 41:5967–5972. doi:10.1021/es0702972

    Article  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD (2015) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 298:241–251. doi:10.1016/j.jhazmat.2015.06.008

    Article  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Mishra S, Dwivedi S, Kumar S et al (2016) Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol Biochem 99:86–96. doi:10.1016/j.plaphy.2015.11.005

    Article  CAS  Google Scholar 

  • Dopson M, Lindstrom EB (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl Environ Microbio 65(1):36–40

    CAS  Google Scholar 

  • Duan GL, Hu Y, Liu WJ, Kneer R, Zhao FJ, Zhu YG (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp Bot 71:416–421. doi:10.1016/j.envexpbot.2011.02.016

    CAS  Google Scholar 

  • Duan G-L, Hu Y, Schneider S, McDermott J, Chen J, Sauer N, Rosen BP, Daus B, Liu Z, Zhu YG (2015) Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nat Plants 2:15202. doi:10.1038/nplants.2015.202

    Article  CAS  Google Scholar 

  • Duxbury JM, Zavala YJ (2005) What are safe levels of arsenic in food and soils? In: Behavior of arsenic in aquifers, soils and plants (Conference Proceedings), International Symposium, Dhaka

  • Duxbury JM, Panaullah GM (2007) Remediation of arsenic for agriculture sustainability, food security and health in Bangladesh. Cornell Univ. Bangladesh Jt Publ FAOWater, FAO, Rome, p 1–28

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:64–664. doi:10.1111/j.1744-7348.2009.00343.x

    Article  Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160

    Article  CAS  Google Scholar 

  • European Union Commission on Regulations (2015) Maximum levels of inorganic arsenic in food stuffs. Commission Regulation (EU) 2015/1006 of 25 June 2015. Brussels, Belgium: Official J Euro Union

  • Fahad S, Hussain S, Saud S, Tanveer M, Bajwa AA, Hassan S, Shah AN, Ullah A, Wu C, Khan FA, Shah F, Ullah S, Chen Y, Huang J (2015) A biochar application protects rice pollen from high-temperature stress. Plant Physiol Biochem 96:281–287

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F et al (2016a) Responses of rapid Viscoanalyzer profile and other Rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS One 11(7):e0159590. doi:10.1371/journal.pone.0159590

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Khan F, Hassan S, Jr A, Nasim W, Arif M, Wang F, Huang J (2016b) Exogenously applied plant growth regulators affect heat-stressed Rice pollens. J Agron Crop Sci 202:139–150

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F, Huang J (2016c) Exogenously applied plant growth regulators enhance the Morphophysiological growth and yield of Rice under high temperature. Front Plant Sci 7:1250. doi:10.3389/fpls.2016.01250

    Article  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Nasrullah KF, Ullah S, Alharby H, Nasim W, Wu C, Huang J (2016d) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    Article  CAS  Google Scholar 

  • Fan J, Xia X, Hu Z, Ziadi N, Liu C (2013) Excessive sulfur supply reduces arsenic accumulation in brown rice. Plant Soil Environ 59:169–174. doi:10.1016/j.envpol.2009.08.042

    CAS  Google Scholar 

  • FAO/WHO (2014) Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods, 8th Session. World Health Organization, Geneva

  • Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA, Yan G, Siddique KHM, Zhou W (2016) Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environ. Exp. Bot. 132:42–52. doi:10.1016/j.envexpbot.2016.08.004

    Article  CAS  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: The effects on plant metabolism. Front Physiol 3:1–18. doi:10.3389/fphys.2012.00182

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: Fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278. doi:10.1016/S0168-1656(02)00218-3

    Article  CAS  Google Scholar 

  • Fitzgerald MA, Ugalde TD, Anderson JW (2001) Sulphur nutrition affects delivery and metabolism of S in developing endosperms of wheat. J Exp Bot 52:1519–1526. doi:10.1093/jexbot/52.360.1519

    Article  CAS  Google Scholar 

  • Fleck AT, Mattusch J, Schenk MK (2013) Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J Plant Nutr Soil Sci 176:785–794. doi:10.1002/jpln.201200440

    CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nature Rev Microbiol 8(9):623–633

    CAS  Google Scholar 

  • Fransisca Y, Small DM, Morrison PD, Spencer MJS, Ball AS, Jones OAH (2015) Assessment of arsenic in Australian grown and imported rice varieties on sale in Australia and potential links with irrigation practices and soil geochemistry. Chemosphere 138:1008–1013. doi:10.1016/j.chemosphere.2014.12.048

    Article  CAS  Google Scholar 

  • Garnier JM, Travassac F, Lenoble V, Rose J, Zheng Y, Hossain MS, Chowdhury SH, Biswas AK, Ahmed KM, Cheng Z, van Geen A (2010) Temporal variations in arsenic uptake by rice plants in Bangladesh: The role of iron plaque in paddy fields irrigated with groundwater. Sci Total Environ 408:4185–4193. doi:10.1016/j.scitotenv.2010.05.019

    Article  CAS  Google Scholar 

  • Geng CN, Zhu YG, Liu WJ, Smith SE (2005) Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations. Aquat Bot 83:321–331. doi:10.1016/j.aquabot.2005.07.003

    Article  CAS  Google Scholar 

  • Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food Chem Toxicol 83:111–124. doi:10.1016/j.fct.2015.05.022

    Article  CAS  Google Scholar 

  • Giri C et al (2014) Distribution and dynamics of mangrove forests of South Asia. J Environ Management. doi:10.1016/j.jenvman.2014.01.020

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026. doi:10.1016/j.chemosphere.2008.04.018

    Article  CAS  Google Scholar 

  • Hansel CM, La Force MJ, Fendorf S, Sutton S (2002) Spatial and temporal association of As and Fe species on aquatic plant roots. Environ Sci Technol 36:1988–1994. doi:10.1021/es015647d

    Article  CAS  Google Scholar 

  • Hawkesford MJ, Buchner P, Hopkins L, Howarth JR (2003) The plant sulphate transporter family: specialized functions and integration with whole plant nutrition. In: Davidian J-C, Grill D, de Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Rennenberg H (eds) Sulfur transport and assimilation in plants. Backhuys Publishers, Leiden, pp 1–10

    Google Scholar 

  • Horneman A, van Geen A, Kent DV, Mathe PE, Zheng Y, Dhar RK, O’Connell S, Hoque MA, Aziz Z, Shamsudduha M, Seddique AA, Ahmed KM (2004) Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part I: Evidence from sediment profiles. Geochim Cosmochim Acta 68:3459–3473. doi:10.1016/j.gca.2004.01.026

    Article  CAS  Google Scholar 

  • Hossain SM, Anantharaman N (2006) Enhancement of ligninolytic enzyme of Trametes versicolor with bagasse powder. Afr. J. Biotechnol. 5:189–194

  • Hossain MB, Jahiruddin M, Loeppert RH, Panaullah GM, Islam MR, Duxbury JM (2009) The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant Soil 317:167–176. doi:10.1007/s11104-008-9798-7

    Article  CAS  Google Scholar 

  • Hu ZY, Zhu YG, Li M, Zhang LG, Cao ZH, Smith FA (2007) Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ Pollut 147:387–393. doi:10.1016/j.envpol.2006.06.014

    Article  CAS  Google Scholar 

  • Hu P, Huang J, Ouyang Y, Wu L, Song J, Wang S et al (2013) Water management affects arsenic and cadmium accumulation in different rice cultivars. Environ Geochem Health 35:767–778. doi:10.1007/s10653-013-9533-z

    Article  CAS  Google Scholar 

  • Hu P, Ouyang Y, Wu L, Shen L, Luo Y, Christie P (2015) Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. J Environ Sci (China) 27:225–231. doi:10.1016/j.jes.2014.05.048

    Article  Google Scholar 

  • Huang JH (2014) Impact of microorganisms on arsenic biogeochemistry: A Review. Water Air Soil Pollut 1848:2–25. doi:10.1007/s11270-013-1848-y

    Google Scholar 

  • Huang JH, Fecher P, Ilgen G, Hu KN, Yang J (2012) Speciation of arsenite and arsenate in rice grain - Verification of nitric acid based extraction method and mass sample survey. Food Chem 130:453–459. doi:10.1016/j.foodchem.2011.07.059

    Article  CAS  Google Scholar 

  • Imamul Huq SM, Shila UK, Joardar JC (2006) Arsenic mitigation strategy for ice, using water regime management. Land Contamination Reclamation 14(4):805–813

  • Inskeep WP, McDermott TR, Fendorf S (2002) Arsenic (V)/(III) cycling in soils and natural waters: chemical and microbiological processes. In: Frankenberger Jr WT (ed) Environmental Chemistry of Arsenic. Marcel Dekker, New York, pp 183–215

    Google Scholar 

  • Islam LN (2015) Immunotoxic Effects of Arsenic Exposure. In: Handbook of Arsenic Toxicology, pp 493–519. doi:10.1016/B978-0-12-418688-0.00021-6

    Chapter  Google Scholar 

  • Islam MR, Jahiruddin M (2010) Effects of arsenic and its interaction with phosphorus on yield and arsenic accumulation in rice. World Con 9:91–94

    Google Scholar 

  • Islam FS, Gault AG, Boothman C, Da P, Charnock JM, Chatterjee D et al (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71. doi:10.1038/nature02638

    Article  CAS  Google Scholar 

  • Jahiruddin M, Islam MR, Shah AL, Islam S, Ghani MA (2004) Effects of arsenic contamination on yield and arsenic accumulation in crops. In Proceedings of Workshop on Arsenic in the Water-Soil-Crop Systems 22:39–52

    Google Scholar 

  • Jiang W, Hou Q, Yang Z, Zhong C, Zheng G, Yang Z et al (2014) Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content. Environ Pollut 188:159–165. doi:10.1016/j.envpol.-2014.02.014

    Article  CAS  Google Scholar 

  • Joshi DN, Flora SJS, Kalia K (2009) Bacillus sp strain DJ-1, potent arsenic hypertolerant bacterium isolated from the industrial effluent of India. J Hazard Mater 166(2–3):1500–1505

    Article  CAS  Google Scholar 

  • Khan MA, Stroud JL, Zhu YG, McGrath SP, Zhao FJ (2010) Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environ Sci Technol 44:8515–8521. doi:10.1021/es101952f

    Article  CAS  Google Scholar 

  • Kim K, Bang S, Zhu Y, Meharg AA, Bhattacharya P (2009) Arsenic geochemistry, transport mechanism in the soil – plant system, human and animal health issues. Environ Int 35:453–454. doi:10.1016/j.envint.2009.01.001

    Article  Google Scholar 

  • Kirk GJD, Van Du LE (1997) Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency. New Phytol 135:191–200. doi:10.1046/j.1469-8137.1997.00640.x

    Article  CAS  Google Scholar 

  • Ko MS et al (2015) Field assessment of arsenic immobilization in soil amended with iron rich acid mine drainage sludge. J Cleaner Production. doi:10.1016/j.jclepro.2015.06.076

  • Kuramata M, Abe T, Kawasaki A, Ebana K, Shibaya T, Yano M, Ishikawa S (2013) Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice 6(3):1–10. doi:10.1186/1939-8433-6-3

    Google Scholar 

  • Lafferty BJ, Loeppert RH (2005) Methyl arsenic adsorption and desorption behavior on iron oxides. Environ Sci Technol 39:2120–2127. doi:10.1021/es048701+

    Article  CAS  Google Scholar 

  • Lee JS, Lee SW, Chon HT, Kim KW (2008) Evaluation of human exposure to arsenic due to rice ingestion in the vicinity abandoned Myungbong Au-Ag mine site, Korea. J Geochemical Exploration 96:231–235

  • Lee CH, Hsieh YC, Lin TH, Lee DY (2013) Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice. Plant Soil 363:231–241. doi:10.1007/s11104-012-1308-2

    Article  CAS  Google Scholar 

  • Lee CH, Wu CH, Syu CH, Jiang PY, Huang CC, Lee DY (2016) Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils. Geoderma 270:60–67. doi:10.1016/j.geoderma.2016.01.003

    Article  CAS  Google Scholar 

  • Lin HT, Wong SS, Li GC (2004) Heavy metal content of rice and shellfish in Taiwan. J Food Drug Anal 12:176

  • Li RY, Stroud JL, Ma JF, Mcgrath SP, Zhao FJ (2009a) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43:3778–3783. doi:10.1021/es803643v

    Article  CAS  Google Scholar 

  • Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009b) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080. doi:10.1104/pp.109.140350

    Article  CAS  Google Scholar 

  • Li G, Sun GX, Williams PN, Nunes L, Zhu YG (2011) Inorganic arsenic in Chinese food and its cancer risk. Environ. Int. 37:1219–1225

    Article  CAS  Google Scholar 

  • Li H, Chen XW, Wong MH (2016) Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemosphere 145:224–230. doi:10.1016/j.chemosphere.2015.10.067

    Article  CAS  Google Scholar 

  • Liu ZY, Chen GZ, Tian YW (2008) Arsenic tolerance, uptake and translocation by seedlings of three rice cultivars. Acta Ecologica Sinica 28:3228–3235 (In Chinese)

  • Liu WJ, Zhu YG, Smith FA, Smith SE (2004) Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J Exp Bot 55:1707–1713. doi:10.1093/jxb/erh205

    Article  CAS  Google Scholar 

  • Liu WJ, Zhu YG, Smith FA (2005) Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant Soil 277:127–138. doi:10.1007/s11104-005-6453-4

    Article  CAS  Google Scholar 

  • Liu C, Luo C, Gao Y, Li F, Lin L, Wu CA, Li XD (2010) Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environ Pollut 158:820–826. doi:10.1016/j.envpol.2009.09.029

    Article  CAS  Google Scholar 

  • Liu C, Yu HY, Liu C, Li F, Xu X, Wang Q (2015) Arsenic availability in rice from a mining area: Is amorphous iron oxide-bound arsenic a source or sink? Environ Pollut 199:95–101. doi:10.1016/j.envpol.2015.01.025

    Article  CAS  Google Scholar 

  • Lu X, Li LY, Wang L, Lei K, Huang J, Zhai Y (2009) Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmos Environ 43:2489–2496. doi:10.1016/j.atmosenv.2009.01.048

    Article  CAS  Google Scholar 

  • Lu Y, Dong F, Deacon C, Hjun C, Raab A, Meharg AA (2010) Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environ Pollut 158:1536–1541. doi:10.1016/j.envpol.2009.12.022

    Article  CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutrition 50:11–18

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397. doi:10.1016/j.tplants.2006.06.007

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Tamai K, Mitani N (2007) Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol 145:919–924. doi:10.1104/pp.107.107599

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U. S.A 105:9931–9935. doi:10.1073/pnas.0802361105

    Article  CAS  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick WH (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139:175–183. doi:10.1007/BF00009308

    Article  CAS  Google Scholar 

  • Marin AR, Pezeshki SR, Masschelen PH, Choi HS (1993) Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic, and photosynthesis of rice plants. J Plant Nutr 16:865–880. doi:10.1080/01904169309364580

    Article  CAS  Google Scholar 

  • Marmiroli M, Pigoni V, Savo-Sardaro ML, Marmiroli N (2014) The effect of silicon on the uptake and translocation of arsenic in tomato (Solanum lycopersicum L.). Environ Exp Bot 99:9–17. doi:10.1016/j.envexpbot.2013.10.016

    Article  CAS  Google Scholar 

  • Marquez MA, Ospina JD, Morales AL (2012) New insights about the bacterial oxidation of arsenopyrite: A mineralogical scope. Miner Eng 39:248–254

    Article  CAS  Google Scholar 

  • Matlakowska R, Drewniak L, Sklodowska A (2008) Arsenic-hypertolerant Pseudomonads isolated from ancient gold and copper-bearing black shale deposits. Geomicrobio J 25(7–8):357–362

    Article  CAS  Google Scholar 

  • Matsumoto S, Kasuga J, Taiki N, Makino T, Arao T (2015) Inhibition of arsenic accumulation in Japanese rice by the application of iron and silicate materials. Catena 135:328–335. doi:10.1016/j.catena.2015.07.004

    Article  CAS  Google Scholar 

  • McGeehan SL, Naylor DV (1994) Sorption and redox transformation of asenite and arsenate in two flooded soils. Soil Sci. Soc Am J 58:337. doi:10.2136/sssaj1994.03615995005800020012x

    Article  CAS  Google Scholar 

  • Meharg AA, Rahman M (2003) Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption arsenic contamination of Bangladesh paddy field soils : Implications for rice contribution to arsenic consumption. Environ Sci Technol 44:229–234. doi:10.1021/es0259842

    Article  CAS  Google Scholar 

  • Meharg AA, Adomaco E, Lawgali Y, Deacon C, Williams P (2007) Food Standards Agency contract C101045: Levels of arsenic in rice–literature review, p 1–65

  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun G, Zhu YG, Feldmann J, Raab A, Zhao FF, Islam R, Hossain S, Yanai J (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617. doi:10.1021/es802612a

    Article  CAS  Google Scholar 

  • Mishra S, Wellenreuther G, Mattusch J, Stärk HJ, Küpper H (2013) Speciation and distribution of arsenic in the non-hyperaccumulator macrophyte Ceratophyllum demersum. Plant Physiol 163:1396–1408. doi:10.1104/pp.113.224303

    Article  CAS  Google Scholar 

  • Miyatake M, Hayashi S (2011) Characteristics of arsenic removal by Bacillus cereus Strain W2. Resour Process 58(3):101–107

    Article  Google Scholar 

  • Moreno-Jiménez E, Meharg AA, Smolders E, Manzano R, Becerra D, Sanchez-Llerena J, Albarran A, Lopez-Pinero A (2014) Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Sci Total Environ 485-486:468–473. doi:10.1016/j.scitotenv.2014.03.106

    Article  CAS  Google Scholar 

  • Muchhal US, Pardo JM, Raghothama KG (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci U.S.A. 93:10519–10523. doi:10.1073/pnas.93.19.10519

    Article  CAS  Google Scholar 

  • Muñoz-Bertomeu J, Cascales-Miñana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM et al (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151:541–558. doi:10.1104/pp.109.143701

    Article  Google Scholar 

  • Nath S, Panda P, Mishra S, Dey M, Choudhury S, Sahoo L et al (2014) Arsenic stress in rice: Redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210. doi:10.1016/j.plaphy.2014.04.013

    Article  CAS  Google Scholar 

  • Neupane G, Donahoe RJ (2013) Calcium-phosphate treatment of contaminated soil for arsenic immobilization. Appl Geochem 28:145–154. doi:10.1016/j.apgeochem.2012.10.011

    Article  CAS  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice-arsenate interactions in hydroponics: Whole genome transcriptional analysis. J Exp Bot 59:2267–2276. doi:10.1093/jxb/ern097

    Article  CAS  Google Scholar 

  • Norton GJ, Islam MR, Deacon CM, Zhao FJ, Stroud JL, McGrath SP, Islam S, Jahiruddin M, Feldmann J, Price AH, Meharg AA (2009) Identification of low inorganic and total grain arsenic rice cultivars from Bangladesh. Environ Sci Technol 43:6070–6075

    Article  CAS  Google Scholar 

  • Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2010) Genetic mapping of the rice ionome in leaves and grain: Identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139–153. doi:10.1007/s11104-009-0141-8

    Article  CAS  Google Scholar 

  • Norton GJ, Adomako EE, Deacon CM, Carey AM, Price AH, Meharg AA (2013) Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species. Environ Pollut 177:38–47. doi:10.1016/j.envpol.2013.01.049

    Article  CAS  Google Scholar 

  • Pan W, Wu C, Xue S, Hartley W (2014) Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation. J Environ Sci (China) 26:892–899. doi:10.1016/S1001-0742(13)60483-0

    Article  CAS  Google Scholar 

  • Panaullah GM, Alam T, Hossain MB, Loeppert RH, Lauren JG, Meisner CA et al (2009) Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 317:31–39. doi:10.1007/s11104-008-9786-y

    Article  CAS  Google Scholar 

  • Peryea FJ (1991) Phosphate-induced release of arsenic from soils contaminated with lead arsenate. Soil Sci Soc Am J 55:1301. doi:10.2136/sssaj-1991.03615995005500050018x

    Article  CAS  Google Scholar 

  • Pigna M, Cozzolino V, Caporale AG, Mora ML, Di Meo V, Jara AA et al (2010) Effects of phosphorus fertilization on arsenic uptake by wheat grown in polluted soils. J Soil Sci Plant Nutr 10:428–442. doi:10.4067/S0718-95162010000200004

    Article  Google Scholar 

  • Pillai TR, Yan WG, Agrama HA, James WD, Ibrahim AMH, McClung AM, Gentry TJ, Loeppert RH (2010) Total grain-arsenic and arsenic-species concentrations in diverse rice cultivars under flooded conditions. Crop Sci 50:2065–2075

    Article  CAS  Google Scholar 

  • Pinson SRM, Tarpley L, Yan W, Kathleen Yeater K, Lahner B, Yakubova E, Huang XY, Zhang M, Guerinot ML, Salt DE (2015) Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci. 55:294. doi:10.2135/cropsci2013.10.0656

    Article  CAS  Google Scholar 

  • Qu D, Ratering S, Schnell S (2004) Microbial reduction of weakly crystalline iron (III) oxides and suppression of methanogenesis in paddy soil. Bull Environ Contam Toxicol 72:1172–1181. doi:10.1007/s00128-004-0367-3

    Article  CAS  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203. doi:10.1071/EN06079

    Article  CAS  Google Scholar 

  • Raghothama KG (2000) Phosphate transport and signaling. Curr Opin Plant Biol 3:182–187. doi:10.1016/S1369-5266(00)00062-5

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H (2011) High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci Total Environ 409:4645–4655. doi:10.1016/j.scitotenv.2011.07.068

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Rahman MA, Miah MAM (2007) Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 69(6):942–948

  • Rahman MA, Hasegawa H, Rahman MM, Miah MAM, Tasmin A (2008) Straight head disease of rice (Oryza sativa L.) induced by arsenic toxicity. Environ Exp Bot 62:54–59. doi:10.1016/j.envexpbot.2007.07.016

    Article  CAS  Google Scholar 

  • Ren JH, Sun HJ, Wang SF, Luo J, Ma LQ (2014) Interactive effects of mercury and arsenic on their uptake, speciation and toxicity in rice seedling. Chemosphere 117C:737–744

  • Roberts LC, Hug SJ, Voegelin A, Dittmar J, Kretzschmar R, Wehrli B, Saha G, Badruzzaman ABM, Ali MA (2011) Arsenic dynamics in pore water of an intermittently irrigated paddy field in Bangladesh. Environ Sci Technol 45:971–976. doi:10.1021/es102882q

    Article  CAS  Google Scholar 

  • Roychowdhury T, Uchino T, Tokunaga H, Ando M (2002) Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food Chemical Toxicology 40:1611–1621

  • Sanglard LMVP, Martins SCV, Detmann KC, Silva PEM, Lavinsky AO, Silva MM et al (2014) Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: An analysis of the key limitations of photosynthesis. Physiol Plant 152:355–366. doi:10.1111/ppl.12178

    Article  CAS  Google Scholar 

  • Sanglard LMVP, Detmann KC, Martins SCV, Teixeira RA, Pereira LF, Sanglard ML et al (2016) The role of silicon in metabolic acclimation of rice plants challenged with arsenic. Environ Exp Bot 123:22–36. doi:10.1016/j.envexpbot.2015.11.004

    Article  CAS  Google Scholar 

  • Sarkar S, Basu B, Kundu CK, Patra PK (2012) Deficit irrigation: An option to mitigate arsenic load of rice grain in West Bengal, India. Agric Ecosyst Environ 146:147–152. doi:10.1016/j.agee.2011.10.008

    Article  CAS  Google Scholar 

  • Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Sadiq A, Chen Y (2014) Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morpho physiological functions. Sci World J. doi:10.1155/2014/368694

    Google Scholar 

  • Saud S, Chen Y, Fahad S, Hussain S, Na L, Xin L, Alhussien SAAFE (2016) Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environ Sci Pollut Res. doi:10.1007/s11356-016-6957-x

    Google Scholar 

  • Schachtschabel P, Blume HP, Brummer G, Hartge KH, Schwertmann U (1998) Lehrbuch der Bodenkunde. In: Scheffer, F. and Schachtschabel, P. (eds.) Ferdinand Enke, Stuttgart, p 191

  • Seyfferth AL, Fendorf S (2012) Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environ Sci Technol 46:13176–13183. doi:10.1021/es3025337

    Article  CAS  Google Scholar 

  • Sheppard SC (1992) Summary of phytotoxic levels of soil arsenic. Water Air Soil Pollut 64:539–550. doi:10.1007/BF00483364

    Article  CAS  Google Scholar 

  • Shibata T, Meng C, Umoren J, West H (2016) Risk assessment of arsenic in rice cereal and other dietary sources for infants and toddlers in the u.s. Int J Environ Res Public Health 13(4):361. doi:10.3390/ijerph13040361

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642. doi:10.1111/j.1365-313X.2004.02161.x

    Article  CAS  Google Scholar 

  • Signes-Pastor A, Burló F, Mitra K, Carbonell-Barrachina AA (2007) Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma 137:504–510. doi:10.1016/j.geoderma.2006.10.012

    Article  CAS  Google Scholar 

  • Signes-Pastor AJ, Mitra K, Sarkhel S, Hobbes M, Burlo F, De Groot WT, Carbonell-Barrachina AA (2008) Arsenic speciation in food and estimation of the dietary intake of inorganic arsenic in a rural village of west Bengal, India. J. Agr. Food Chem. 56:9469–9474. doi:10.1021/jf801600j

    Article  CAS  Google Scholar 

  • Signes-Pastor AJ, Carey M, Meharg AA (2016) Inorganic arsenic in rice-based products for infants and young children. Food Chem 191:128–134

    Article  CAS  Google Scholar 

  • Smith AH (2002) Arsenic epidemiology and drinking water standards. Science 296(80):2145–2146. doi:10.1126/science.1072896

    Article  CAS  Google Scholar 

  • Somenahally AC, Hollister EB, Loeppert RH, Yan W, Gentry TJ (2011) Microbial communities in rice rhizosphere altered by intermittent and continuous flooding in fields with long-term arsenic application. Soil Biol Biochem 43:1220–1228. doi:10.1016/j.soilbio.2011.02.011

    Article  CAS  Google Scholar 

  • Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S et al (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187–21192. doi:10.1073/pnas.1013964107

    Article  CAS  Google Scholar 

  • Song W-Y, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci USA 111(15):699–704. doi:10.1073/pnas.1414968111

    Google Scholar 

  • Spanu A, Daga L, Orlandoni AM, Sanna G (2012) The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.). Environ Sci Technol 46:8333–8340. doi:10.1021/es300636d

    Article  CAS  Google Scholar 

  • Srivastava S, D’Souza SF (2009) Increasing sulfur supply enhances tolerance to arsenic and its accumulation in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 43:6308–6313. doi:10.1021/es900304x

    Article  CAS  Google Scholar 

  • Srivastava S, Akkarakaran JJ, Sounderajan S, Shrivastava M, Suprasanna P (2015) Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply: Impact on the expression of transporters and thiol metabolism. Geoderma. doi:10.1016/j.geoderma.2015.11.006

    Google Scholar 

  • Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328(1-2):27–34

    Article  CAS  Google Scholar 

  • Sun Y, Li Z, Guo B, Chu G, Wei C, Liang Y (2008) Arsenic mitigates cadmium toxicity in rice seedlings. Environ Exp Bot 64:264–270. doi:10.1016/j.envexpbot.2008.05.009

    Article  CAS  Google Scholar 

  • Syu CH, Lee CH, Jiang PY, Chen MK, Lee DY (2014) Comparison of As sequestration in iron plaque and uptake by different genotypes of rice plants grown in As-contaminated paddy soils. Plant Soil 374:411–422. doi:10.1007/s11104-013-1893-8

    Article  CAS  Google Scholar 

  • Syu CH, Huang CC, Jiang PY, Lee CH, Lee DY (2015) Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils. J Hazard Mater 286:179–186. doi:10.1016/j.jhazmat.2014.12.052

    Article  CAS  Google Scholar 

  • Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044. doi:10.1021/es034383n

    Article  CAS  Google Scholar 

  • Talukder AS (2005) Effect of water management and phosphorus rates on the growth of rice in a high-arsenic soil–water system. In Behaviour of arsenic in aquifers, soils and plants: implications for management. Arsenic Symposium, Dhaka, CIMMYT

  • Talukder ASMHM, Meisner CA, Sarkar MAR, Islam MS (2011) Effect of water management, tillage options and phosphorus status on arsenic uptake in rice. Ecotoxicology Environ Safety 74:834–839

  • Talukder ASMHM, Meisner CA, Sarkar MAR, Islam MS, Sayre KD, Duxbury JM, Lauren JG (2012) Effect of water management, arsenic and phosphorus levels on rice in a high-arsenic soil-water system: II. Arsenic uptake. Ecotoxicol Environ Saf 80:145–151. doi:10.1016/j.ecoenv.2012.02.020

    Article  CAS  Google Scholar 

  • Talukder ASMHM, Meisner CA, Sarkar MAR, Islam MS, Sayre KD (2014) Effects of water management, arsenic and phosphorus levels on rice yield in high-arsenic soil-water system. Rice Sci 21:99–107. doi:10.1016/S1672-6308(13)60172-9

    Article  Google Scholar 

  • Tsai SL, Shailendra S, Wilfred C (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Current Opinion in Biotechnology 20:659–667

  • Tsutsumi M (1980) Intensification of arsenic toxicity to paddy rice by hydrogen sulfide and ferrous iron. I. Induction of bronzing and iron accumulation in rice by arsenic. Soil Sci Plant Nutr 26:561–569

  • Taylor GJ, Crowder AA, Rodden R (1984) Formation and morphology of an iron plaque on the roots of Typha latifolia L. grown in solution culture. Am J Bot 71(5):666–675

    Article  CAS  Google Scholar 

  • Torres-Escribano S, Leal M, Vélez D, Montoro R (2008) Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking, and risk assessments. Environ Sci Technol 42:3867–3872. doi:10.1021/es071516m

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK et al (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165. doi:10.1016/j.tibtech.2007.02.003

    Article  CAS  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D, Shri M et al (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103. doi:10.1016/j.ecoleng.2012.12.057

    Article  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S, Kumar A, Mishra A, Chauhan PS, Norton GJ, Nautiyal CS (2014) Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6:1789–1800. doi:10.1039/C4MT00111G

    Article  CAS  Google Scholar 

  • U.S. Agency for Toxic Substances and Diseases Registry (U.S. ATSDR) (2010) Arsenic Toxicity: What Are the Standards and Regulation for Arsenic Exposure? ATSDR: Atlanta, GA, USA, 2010

  • Ultra VU, Nakayama A, Tanaka S, Kang Y, Sakurai K, Iwasaki K (2009) Potential for the alleviation of arsenic toxicity in paddy rice using amorphous iron-(hydr)oxide amendments. Soil Sci Plant Nutr 55:160–169. doi:10.1111/j.1747-0765.2008.00341.x

    Article  CAS  Google Scholar 

  • Upadhyay AK, Bankoti NS, Rai UN (2016) Studies on sustainability of simulated constructed wetland system for treatment of urban waste: design and operation. J Environ Manag 169:285–292

  • US Food and Drug Administration (2015) Questions & Answers: Arsenic in Rice and Rice Products; US. FDA: Silver Spring, MD, USA, 2015

  • Wang X, Peng B, Tan C et al (2015) Recent advances in arsenic bioavailability, transport, and speciation in rice. Environ Sci Pollut Res 22:5742–5750. doi:10.1007/s11356-014-4065-3

    Article  CAS  Google Scholar 

  • Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39:5531–5540. doi:10.1021/es0502324

    Article  CAS  Google Scholar 

  • Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG, Feldmann J, Meharg AA (2006) Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol 40:4903–4908. doi:10.1021/es060222i

    Article  CAS  Google Scholar 

  • Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ et al (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859. doi:10.1021/es070627i

    Article  CAS  Google Scholar 

  • Williams GP, Gnanadesigan M, Ravikumar S (2013) Biosorption and bio-kinetic properties of solar saltern Halobacterial strains for managing Zn2+, As2+ and Cd2+ metals. Geomicrobio J 30(6):497–500

    Article  CAS  Google Scholar 

  • Woolson EA (1973) Arsenic phytotoxicity and uptake in six vegetable crops. Weed Sci 21:524–527. doi:10.2307/4042205

    CAS  Google Scholar 

  • Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508. doi:10.1104/pp.111.178921

    Article  CAS  Google Scholar 

  • Wu C, Zou Q, Xue S, Mo J, Pan W, Lou L, Wong MH (2015) Effects of silicon (Si) on arsenic (As) accumulation and speciation in rice (Oryza sativa L.) genotypes with different radial oxygen loss (ROL). Chemosphere 138:447–453. doi:10.1016/j.chemosphere.2015.06.081

    Article  CAS  Google Scholar 

  • Wu C, Zou Q, Xue SG, Pan WS, Huang L, Hartley W, Mo JY, Wong MH (2016a) The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL). Environ Pollut 212:27–33. doi:10.1016/j.envpol.2016.01.004

    Article  CAS  Google Scholar 

  • Wu C, Zou Q, Xue SG, Pan WS, Yue X, Hartley W, Huang L, Mo JY (2016b) Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants. Chemosphere 165:478–486. doi:10.1016/j.chemosphere.2016.09.061

    Article  CAS  Google Scholar 

  • Xie ZM, Naidu R (2006) Factors influencing bioavailability of arsenic to crops (Doctoral dissertation, CSIRO Publishing)

  • Xie ZM, Luo Y, Wang YX, Xie XJ, Su CL (2013) Arsenic resistance and bioaccumulation of an indigenous bacterium isolated from aquifer sediments of Datong Basin, Northern China. Geomicrobiol J 30(6):549–556

    Article  CAS  Google Scholar 

  • Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T (2011) Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 83:925–932. doi:10.1016/j.chemosphere.-2011.02.044

    Article  CAS  Google Scholar 

  • Yamaji N, Ma JF (2011) Further characterization of a rice silicon efflux transporter, Lsi2. Soil Sci Plant Nutr 57:259–264. doi:10.1080/00380768.2011.565480

    Article  CAS  Google Scholar 

  • Yamane T (1989) Mechanisms and counter-measures of arsenic toxicity to rice plant. Bull Shimane Agric Exp Stat 24:1–95

    Google Scholar 

  • Yang T, Chen ML, Liu LH, Wang JH, Dasgupta PK (2012) Iron (III) modification of Bacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As(V). Environ Sci Technol 46(4):2251–2256

    Article  CAS  Google Scholar 

  • Yu Z, Qiu W, Wang F, Ming Lei M, Wang D, Song Z (2017) Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere 168:341–349. doi:10.1016/j.chemosphere.2016.10.069

    Article  CAS  Google Scholar 

  • Zavala YJ, Duxbury JM (2008) Arsenic in Rice: I. Estimating normal levels of total arsenic in rice grain. Environ Sci Technology 42:3856–3860

  • Zavala YJ, Gerads R, Gürleyük H, Duxbury JM (2008) Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health. Environ Sci Technol 42:3861–3866. doi:10.1021/es702748q

    Article  CAS  Google Scholar 

  • Zhang J, Zhao QZ, Duan GL, Huang YC (2011) Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environ Exp Bot 72:34–40. doi:10.1016/j.envexpbot.2010.05.007

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559. doi:10.1146/annurev-arplant-042809-112152

    Article  CAS  Google Scholar 

  • Zhao FJ, Stroud JL, Khan MA, McGrath SP (2012) Arsenic translocation in rice investigated using radioactive As-73 tracer. Plant Soil 350:413–420. doi:10.1007/s11104-011-0926-4

    Article  CAS  Google Scholar 

  • Zheng MZ, Li G, Sun GX, Shim H, Cai C (2013) Differential toxicity and accumulation of inorganic and methylated arsenic in rice. Plant soil 365(1-2):227–238. doi:10.1007/s11104-012-1376-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hafiz Faiq Bakhat or Shah Fahad.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhat, H.F., Zia, Z., Fahad, S. et al. Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: A review. Environ Sci Pollut Res 24, 9142–9158 (2017). https://doi.org/10.1007/s11356-017-8462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8462-2

Keywords

Navigation