Skip to main content

Advertisement

Log in

Experimental coupling and modelling of wet air oxidation and packed-bed biofilm reactor as an enhanced phenol removal technology

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Experimental coupling of wet air oxidation process and aerobic packed-bed biofilm reactor is presented. It has been tested on phenol as a model refractory compound. At 30 MPa and 250 °C, wet air oxidation batch experiments led to a phenol degradation of 97% and a total organic carbon removal of 84%. This total organic carbon was mainly due to acetic acid. To study the interest of coupling processes, wet air oxidation effluent was treated in a biological treatment process. This step was made up of two packed-bed biofilm reactors in series: the first one acclimated to phenol and the second one to acetic acid. After biological treatment, phenol and total organic carbon removal was 99 and 97% respectively. Thanks to parameters from literature, previous studies (kinetic and thermodynamic) and experimental data from this work (hydrodynamic parameters and biomass characteristics), both treatment steps were modelled. This modelling allows the simulation of the coupling process. Experimental results were finally well reproduced by the continuous coupled process model: relative error on phenol removal efficiency was 1 and 5.5% for wet air oxidation process and packed-bed biofilm reactor respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AF :

m2

Total biofilm surface area

BOD:

gBOD L−1

Biological oxygen demand

CO2(d) :

mol L−1

Dissolved oxygen concentration in WAO

CWAO Hdq :

mol L−1

Hydroquinone concentration in WAO

CWAO AcAc :

mol L−1

Acetic acid concentration in WAO

CWAO PhOH :

mol L−1

Phenol concentration in WAO

C0 PhOH :

g m−3

Phenol concentration at the packing/biofilm interface

CB PhOH :

g m−3

Phenol concentration in bulk liquid

CF PhOH :

g m−3

Phenol concentration at the biofilm/boundary layer interface

Cin PhOH :

g m−3

Phenol concentration in the influent

COD:

gCOD L−1

Chemical oxygen demand

DF PhOH :

m2 s−1

Phenol diffusion coefficient in biofilm

DL PhOH :

m2 s−1

Phenol diffusion coefficient in water

dP :

m

Packing characteristic size

jF PhOH :

gphenol m−2 s−1

Phenol flux

k:

L mol−1 s−1

Phenol oxidation rate constant

kPhOH :

m s−1

Phenol mass transfer coefficient

Ki :

g m−3

Phenol inhibition constant

KPhOH :

g m−3

Phenol affinity constant

LL :

m

Boundary layer length

Q:

m3 s−1

Phenol flow rate

R:

Ratio of phenol diffusion coefficient in biofilm on phenol diffusion coefficient in water

r:

gCOD-X m−3 s−1

Bacteria growth rate

rPhOH :

gphenol m−3 s−1

Phenol consumption rate

Re:

Reynolds number

Sc:

Schmidt number

Sh:

Sherwood number

XH :

gCOD-X m−3

Biofilm density

XV :

kgVS m−3

Biofilm density used in R calculation

YX/H :

gCOD-X gphenol −1

Heterotrophic biomass yield

z:

m

Distance from packing

μmax :

s−1

Specific growth rate

νwater :

m2 s−1

Water kinematic viscosity

References

  • Assalin MR, dos Santos AE, Durán N (2009) Combined system of activated sludge and ozonation for the treatment of Kraft E1 effluent. Int J Environ Res Public Health 6:1145–1154

    Article  CAS  Google Scholar 

  • Bajaj M, Gallert C, Winter J (2008) Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor. Bioresour Technol 99:8376–8381

    Article  CAS  Google Scholar 

  • Benitez FJ, Beltran-Heredia J, Torregrosa J, Acero JL (1999) Treatment of olive mill wastewaters by ozonation, aerobic degradation and the combination of both treatments. J Chem Technol Biotechnol 74:639–646

    Article  CAS  Google Scholar 

  • Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160:265–288

    Article  CAS  Google Scholar 

  • Debellefontaine H, Crispel S, Reilhac P, Périé F, Foussard JN (1999) Wet air oxidation (WAO) for the treatment of industrial wastewater and domestic sludge. Design of bubble column reactors Chem Eng Sci 54:4953–4959

    CAS  Google Scholar 

  • di Laconi C (2012) Biological treatment and ozone oxidation: integration or coupling? Bioresour Technol 106:63–68

    Article  Google Scholar 

  • Fan LS, Leyva-Ramos R, Wisecarver KD, Zehner BJ (1990) Diffusion of phenol through a biofilm grown on activated carbon particles in a draft-tube three-phase fluidized-bed bioreactor. Biotechnol Bioeng 35:279–286

    Article  CAS  Google Scholar 

  • Guieysse B, Norvill ZN (2014) Sequential chemical–biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment. J Hazard Mater 267:142–152

    Article  CAS  Google Scholar 

  • Hsien TY, Lin YH (2005) Biodegradation of phenolic wastewater in a fixed biofilm reactor. Biochem Eng J 27:95–103

    Article  CAS  Google Scholar 

  • INERIS, (2006) Fiche de données toxicologiques et environnementales du phénol (french).

  • Ishak S, Malakahmad A (2013) Optimization of Fenton process for refinery wastewater biodegradability augmentation. Korean J Chem Eng 30:1083–1090

    Article  CAS  Google Scholar 

  • Kantarci N, Borak F, Ulgen KO (2005) Bubble column reactors. Process Biochem 40:2263–2283

    Article  CAS  Google Scholar 

  • Lefèvre S, Boutin O, Ferrasse JH, Malleret L, Faucherand R, Viand A (2011a) Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process. Chemosphere 84:1208–1215

    Article  Google Scholar 

  • Lefèvre S, Ferrasse JH, Faucherand R, Viand A, Boutin O (2012) Energetic optimization of wet air oxidation process using experimental design coupled with process simulation. Energy 41:175–183

    Article  Google Scholar 

  • Lefèvre S, Ferrasse JH, Boutin O, Sergent M, Faucherand R, Viand A (2011b) Process optimisation using the combination of simulation and experimental design approach: application to wet air oxidation. Chem Eng Res and Des 89:1045–1055

    Article  Google Scholar 

  • Lei Y, Shen Z, Huang R, Wang W (2007) Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation. Water Res 41:2417–2426

    Article  CAS  Google Scholar 

  • Libra JA, Sosath F (2003) Combination of biological and chemical processes for the treatment of textile wastewater containing reactive dyes. J Chem Technol Biotechnol 78:1149–1156

    Article  CAS  Google Scholar 

  • Logan BE (2012) Environmental transport processes, Wiley.

  • Mantzavinos D, Psillakis E (2004) Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. J Chem Technol Biotechnol 79:431–454

    Article  CAS  Google Scholar 

  • Mantzavinos D, Kalogerakis N (2005) Treatment of olive mill effluents: part I. Organic matter degradation by chemical and biological processes—an overview. Environ Int 31:289–295

    Article  CAS  Google Scholar 

  • Marrot B, Barrios-Martinez A, Moulin P, Roche N (2006) Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor. Biochem Eng J 30:174–183

    Article  CAS  Google Scholar 

  • Minh PD, Gallezot P, Azabou S, Sayadi S, Besson M (2008) Catalytic wet air oxidation of olive oil mill effluents: 4 treatment and detoxification of real effluents. Appl Catal B Environ 84:749–775

    Article  Google Scholar 

  • Nuhoglu A, Yalcin B (2005) Modelling of phenol removal in a batch reactor. Process Biochem 40:1233–1239

    Article  CAS  Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409:4141–4166

    Article  CAS  Google Scholar 

  • Pawlowsky U, Howell JA (1973) Mixed culture biooxidation of phenol. I. Determination of kinetic parameters. Biotechnol Bioeng 15:889–896

    Article  CAS  Google Scholar 

  • Pariente MI, Siles JA, Molina R, Botas JA, Melero JA, Martinez F (2013) Treatment of an agrochemical wastewater by integration of heterogeneous catalytic wet hydrogen peroxide oxidation and rotating biological contactors. Chem Eng J 226:409–415

    Article  CAS  Google Scholar 

  • Pishgar R (2011) Anaerobic biodegradation of phenol: comparative study of free and immobilized growth. Iran J Energy Environ.

  • Ranade VV, Chaudhari R, Gunjal PR (2011) Trickle bed reactors: reactor engineering & applications. Elsevier, Netherlands

    Google Scholar 

  • Rivas J, Gimeno O, Portela JR, de la Ossa EM, Beltrán FJ (2001) Supercritical water oxidation of olive oil mill wastewater. Ind Eng Chem Res 40:3670–3674

    Article  CAS  Google Scholar 

  • Saravanan P, Pakshirajan K, Saha P (2008) Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresour Technol 99:205–209

    Article  CAS  Google Scholar 

  • Scott JP, Ollis DF (1995) Integration of chemical and biological oxidation processes for water treatment: review and recommendations. Environ Prog 14:88–103

    Article  CAS  Google Scholar 

  • Van Swaaij WPM, Charpentier JC, Villermaux J (1969) Residence time distribution in the liquid phase of trickle flow in packed columns. Chem Eng Sci 24:1083–1095

    Article  CAS  Google Scholar 

  • Verenich S, Kallas J (2002) Wet oxidation lumped kinetic model for wastewater organic burden biodegradability prediction. Environ Sci Technol 36:3335–3339

    Article  CAS  Google Scholar 

  • Wang X, Han J, Chen Z, Jian L, Gu X, Lin CJ (2012) Combined processes of two-stage Fenton-biological anaerobic filter–biological aerated filter for advanced treatment of landfill leachate. Waste Manag 32:2401–2405

    Article  CAS  Google Scholar 

  • Warnock JN, Bratch K, Al-Rubeai M (2005) Packed bed bioreactors. In: Chaudhuri J, Al-Rubeai M (eds) Bioreact. Tissue Eng. Springer, Netherlands

    Google Scholar 

  • Zapata A, Malato S, Sánchez-Pérez JA, Oller I, Maldonado MI (2010) Scale-up strategy for a combined solar photo-Fenton/biological system for remediation of pesticide-contaminated water. Catal Today 151:100–106

    Article  CAS  Google Scholar 

  • Zeng M, Soric A, Roche N (2013) Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions. Bioresour Technol 144:202–209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Boutin.

Additional information

Responsible editor: Bingcai Pan

Electronic supplementary material

ESM 1

(DOCX 235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minière, M., Boutin, O. & Soric, A. Experimental coupling and modelling of wet air oxidation and packed-bed biofilm reactor as an enhanced phenol removal technology. Environ Sci Pollut Res 24, 7693–7704 (2017). https://doi.org/10.1007/s11356-017-8435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8435-5

Keywords

Navigation