Skip to main content
Log in

Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example

  • PCBs Risk Evaluation and Environmental Protection
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Toxicological studies use “specialty chemicals” and, thus, should assess and report both identity and degree of purity (homogeneity) of the chemicals (or toxicants) under investigation to ensure that other scientists can replicate experimental results. Although detailed reporting criteria for the synthesis and characterization of organic compounds have been established by organic chemistry journals, such criteria are inconsistently applied to the chemicals used in toxicological studies. Biologically active trace impurities may lead to incorrect conclusions about the chemical entity responsible for a biological response, which in turn may confound risk assessment. Based on our experience with the synthesis of PCBs and their metabolites, we herein propose guidelines for the “authentication” of synthetic PCBs and, by extension, other organic toxicants, and provide a checklist for documenting the authentication of toxicants reported in the peer-reviewed literature. The objective is to expand guidelines proposed for different types of biomedical and preclinical studies to include a thorough authentication of specialty chemicals, such as PCBs and their derivatives, with the goal of ensuring transparent and open reporting of scientific results in toxicology and the environmental health sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amaro AR, Oakley GG, Bauer U, Spielmann HP, Robertson LW (1996) Metabolic activation of PCBs to quinones: reactivity toward nitrogen and sulfur nucleophiles and influence of superoxide dismutase. Chem Res Toxicol 9:623–629

    Article  CAS  Google Scholar 

  • Athanasiadou M, Jensen S, Wehler EK (1991) Preparative fractionation of a commercial PCB product. Chemosphere 23:957–970

    Article  CAS  Google Scholar 

  • Bandiera S, Safe S, Okey AB (1982) Binding of polychlorinated biphenyls classified as either phenobarbitone, 3-methylcholanthrene or mixed-type inducers to cytosolic Ah receptor. Chem Biol Interact 39:259–277

    Article  CAS  Google Scholar 

  • Bauer U, Amaro AR, Robertson LW (1995) A new strategy for the synthesis of polychlorinated biphenyl metabolites. Chem Res Toxicol 8:92–95

    Article  CAS  Google Scholar 

  • van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–241

    Article  CAS  Google Scholar 

  • Cadogan JIG, Roy DA, Smith DM (1962) An alternative to the Sandmeyer reaction. J Chem Soc C 1249–1250

  • Chen JJ, Chen GS, Bunce NJ (2003) Inhibition of CYP 1A2-dependent MROD activity in rat liver microsomes: an explanation of the hepatic sequestration of a limited subset of halogenated aromatic hydrocarbons. Environ Toxicol 18:115–119

    Article  CAS  Google Scholar 

  • Danielsson C, Harju M, Halldin K, Tysklind M, Andersson PL (2008) Comparison of levels of PCDD/Fs and non-ortho PCBs in PCB 153 from seven different suppliers. Organohalogen Compd 70:1201–1203

    CAS  Google Scholar 

  • Denomme MA, Bandiera S, Lambert I, Copp L, Safe L, Safe S (1983) Polychlorinated biphenyls as phenobarbitone-type inducers of microsomal enzymes. Structure-activity relationships for a series of 2,4-dichloro-substituted congeners. Biochem Pharmacol 32:2955–2963

  • Dhakal K, He X, Lehmler H-J, Teesch LM, Duffel MW, Robertson LW (2012) Identification of sulfated metabolites of 4-chlorobiphenyl (PCB3) in the serum and urine of male rats. Chem Res Toxicol 25:2796–2804

    Article  CAS  Google Scholar 

  • Dhakal K, Adamcakova-Dodd A, Lehmler HJ, Thorne PS, Robertson LW (2013) Sulfate conjugates are urinary markers of inhalation exposure to 4-chlorobiphenyl (PCB3). Chem Res Toxicol 26:853–855

    Article  CAS  Google Scholar 

  • Dhakal K, Uwimana E, Adamcakova-Dodd A, Thorne PS, Lehmler HJ, Robertson LW (2014) Disposition of phenolic and sulfated metabolites after inhalation exposure to 4-chlorobiphenyl (PCB3) in female rats. Chem Res Toxicol 27:1411–1420

    Article  CAS  Google Scholar 

  • Diliberto JJ, Burgin DE, Birnbaum LS (1999) Effects of CYP1A2 on disposition of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, and 2,2′,4,4′,5,5′-hexachlorobiphenyl in CYP1A2 knockout and parental (C57BL/6N and 129/Sv) strains of mice. Toxicol Appl Pharmacol 159:52–64

    Article  CAS  Google Scholar 

  • Espandiari P, Glauert HP, Lehmler H-J, Lee EY, Srinivasan C, Robertson LW (2003) Polychlorinated biphenyls as initiators in liver carcinogenesis: resistant hepatocyte model. Toxicol Appl Pharmacol 186:55–62

    Article  CAS  Google Scholar 

  • Fritsch EB, Pessah IN (2013) Structure-activity relationship of non-coplanar polychlorinated biphenyls toward skeletal muscle ryanodine receptors in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 140-141:204–212

    Article  CAS  Google Scholar 

  • Goldstein JA, Hass JR, Linko P, Harvan DJ (1978) 2,3,7,8-Tetrachlorodibenzofuran in a commercially available 99% pure polychlorinated biphenyl isomer identified as the inducer of hepatic cytochrome P-448 and aryl hydrocarbon hydroxylase in the rat. Drug Metab Dispos 6:258–264

    CAS  Google Scholar 

  • Grimm FA, Lehmler HJ, He X, Robertson LW, Duffel MW (2013) Sulfated metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretin. Environ Health Perspect 121:657–662

    Article  Google Scholar 

  • Grimm FA, He X, Teesch LM, Lehmler HJ, Robertson LW, Duffel MW (2015) Tissue distribution, metabolism, and excretion of 3,3′-dichloro-4′-sulfooxy-biphenyl in the rat. Environ Sci Technol 49:8087–8095

    Article  CAS  Google Scholar 

  • Grimm FA, Lehmler HJ, Koh WX, DeWall J, Teesch LM, Hornbuckle KC, Thorne PS, Robertson LW, Duffel MW (2017) Identification of a sulfate metabolite of PCB 11 in human serum. Environ Int 98:120–128

    Article  CAS  Google Scholar 

  • Haglund P (1996a) Isolation and characterisation of polychlorinated biphenyl (PCB) atropisomers. Chemosphere 32:2133–2140

    Article  CAS  Google Scholar 

  • Haglund P (1996b) Enantioselective separation of polychlorinated biphenyl atropisomers using chiral high-performance liquid chromatography. J Chromatogr A 724:219–228

    Article  CAS  Google Scholar 

  • Holland EB, Feng W, Zheng J, Dong Y, Li X, Lehmler H-J, Pessah IN (2017) An extended structure-activity relationship of non-dioxin-like PCBs evaluates and supports modeling predictions and identifies picomolar potency of PCB 202 towards ryanodine receptors. Toxicol Sci 155:170–181

  • Hu X, Adamcakova-Dodd A, Lehmler HJ, Gibson-Corley K, Thorne PS (2015) Toxicity evaluation of exposure to an atmospheric mixture of polychlorinated biphenyls by nose-only and whole-body inhalation regimens. Environ Sci Technol 49:11875–11883

    Article  CAS  Google Scholar 

  • van den Hurk P, Kubiczak GA, Lehmler H-J, James MO (2002) Hydroxylated polychlorinated biphenyls as inhibitors of the sulfation and glucuronidation of 3-hydroxy-benzo[a]pyrene. Environ Health Perspect 110:343–348

    Article  Google Scholar 

  • Hutzinger O, Safe S, Zitko V (1971) Polychlorinated biphenyls—synthesis of some individual chlorobiphenyls. Bull Environ Contam Toxicol 6:209–219

    Article  CAS  Google Scholar 

  • Joshi SN, Vyas SM, Duffel MW, Parkin S, Lehmler H-J (2011) Synthesis of sterically hindered polychlorinated biphenyl derivatives. Synthesis 7:1045–1054

    CAS  Google Scholar 

  • Kania-Korwel I, Lehmler H-J (2013) Assigning atropisomer elution orders using atropisomerically enriched polychlorinated biphenyl fractions generated by microsomal metabolism. J Chromatogr A 1278:133–144

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Lehmler HJ (2016a) Toxicokinetics of chiral polychlorinated biphenyls across different species—a review. Environ Sci Pollut Res Int 23:2058–2080

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Lehmler HJ (2016b) Chiral polychlorinated biphenyls: absorption, metabolism and excretion-a review. Environ Sci Pollut Res Int 23:2042–2057

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Parkin S, Robertson LW, Lehmler H-J (2004) Synthesis of polychlorinated biphenyls and their metabolites with a modified Suzuki coupling. Chemosphere 56:735–744

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Shaikh NS, Hornbuckle KC, Robertson LW, Lehmler H-J (2007) Enantioselective disposition of PCB 136 (2,2′,3,3′,6,6′-hexachlorobiphenyl) in C57BL/6 mice after oral and intraperitoneal administration. Chirality 19:56–66

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Hrycay EG, Bandiera SM, Lehmler H-J (2008a) 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) atropisomers interact enantioselectively with hepatic microsomal cytochrome P450 enzymes. Chem Res Toxicol 21:1295–1303

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Zhao H, Norstrom K, Li X, Hornbuckle KC, Lehmler H-J (2008b) Simultaneous extraction and clean-up of PCBs and their metabolites from small tissue samples using pressurized liquid extraction. J Chromatogr A 1214:37–46

    Article  CAS  Google Scholar 

  • Kong KC, Cheng CH (1991) Facile aryl-aryl exchange between the palladium center and phosphine ligands in palladium(II) complexes. J Am Chem Soc 113:6313–6315

    Article  CAS  Google Scholar 

  • Kunz S, Schwarz M, Schilling B, Paepke O, Lehmler H-J, Robertson LW, Schrenk D, Schmitz H-J (2006) Tumor promoting potency of PCBs 28 and 101 in rat liver. Toxicol Lett 164:133–143

    Article  CAS  Google Scholar 

  • Landis SC et al (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490:187–191

    Article  CAS  Google Scholar 

  • Lehmler H-J, Robertson LW (2001a) Synthesis of polychlorinated biphenyls using the Suzuki-coupling. Chemosphere 45:137–143

    Article  CAS  Google Scholar 

  • Lehmler H-J, Robertson LW (2001b) Synthesis of hydroxylated PCB metabolites with the Suzuki-coupling. Chemosphere 45:1119–1127

    Article  CAS  Google Scholar 

  • Lehmler H-J, Harrad SJ, Huhnerfuss H, Kania-Korwel I, Lee CM, Lu Z, Wong CS (2010) Chiral polychlorinated biphenyl transport, metabolism, and distribution: a review. Environ Sci Technol 44:2757–2766

    Article  CAS  Google Scholar 

  • Li X, Parkin S, Duffel MW, Robertson LW, Lehmler H-J (2010) An efficient approach to sulfate metabolites of polychlorinated biphenyls. Environ Int 36:843–848

    Article  CAS  Google Scholar 

  • Li X, Parkin SR, Lehmler HJ (2017) Absolute configuration of 2,2′,3,3′,6-pentachlorinatedbiphenyl (PCB 84) atropisomers. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-017-9259-z

  • Lin P-H, Sangaiah R, Ranasinghe A, Ball LM, Swenberg JA, Gold A (2004) Synthesis of chlorinated and non-chlorinated biphenyl-2,3- and 3,4-catechols and their [2H3]-isotopomers. Org Biomol Chem 2:2624–2629

    Article  CAS  Google Scholar 

  • Loos R, Vollmuth S, Niessner R (1997) Group separation of ortho-PCBs, coplanar non-ortho-PCBs and PCDDs/PCDFs using an alumina column as an one-step clean-up procedure. Fresenius J Anal Chem 357:1081–1087

    Article  CAS  Google Scholar 

  • Ma C, Zhai G, Wu H, Kania-Korwel I, Lehmler HJ, Schnoor JL (2016) Identification of a novel hydroxylated metabolite of 2,2′,3,5′,6-pentachlorobiphenyl formed in whole poplar plants. Environ Sci Pollut Res Int 23:2089–2098

    Article  CAS  Google Scholar 

  • Machala M, Blaha L, Lehmler H-J, Pliskova M, Majkova Z, Kapplova P, Sovadinova I, Vondracek J, Malmberg T, Robertson LW (2004) Toxicity of hydroxylated and quinoid PCB metabolites: inhibition of gap junctional intercellular communication and activation of aryl hydrocarbon and estrogen receptors in hepatic and mammary cells. Chem Res Toxicol 17:340–347

    Article  CAS  Google Scholar 

  • Mannila E (1992) Synthesis and structure verification of two previously uncharacterized pentachlorobiphenyls: PCB 108 and PCB 127. Chemosphere 25:271–276

    Article  CAS  Google Scholar 

  • Marsh G, Hu J, Jakobsson E, Rahm S, Bergman A (1999) Synthesis and characterization of 32 polybrominated diphenyl ethers. Environ Sci Technol 33:3033–3037

    Article  CAS  Google Scholar 

  • Matthews J, Zacharewski T (2000) Differential binding affinities of PCBs, HO-PCBs, and Aroclors with recombinant human, rainbow trout (Onchorhynkiss mykiss), and green anole (Anolis carolinensis) estrogen receptors, using a semi-high throughput competitive binding assay. Toxicol Sci 53:326–339

  • McLean MR, Bauer U, Amaro AR, Robertson LW (1996) Identification of catechol and hydroquinone metabolites of 4-monochlorobiphenyl. Chem Res Toxicol 9:158–164

    Article  CAS  Google Scholar 

  • Moron M, Sundström G, Wachtmeister CA (1973) Polychlorinated biphenyls. VI. 2,3,7,8-Tetrachlorodibenzofuran, a critical byproduct in the synthesis of 2,2′,4,4′,5,5′-hexachloro-biphenyl by the Ullmann reaction. Acta Chem Scand 27:3121–3122

    Article  CAS  Google Scholar 

  • Nakatsu K, Brien JF, Taub H, Racz WJ, Marks GS (1982) Gram quantity synthesis and chromatographic assessment of 3,3′,4,4′-tetrachlorobiphenyl. J Chromatogr 239:97–106

    Article  CAS  Google Scholar 

  • National Institutes of Health (2016) Updated application instructions to enhance rigor and reproducibility. https://www.nih.gov/research-training/rigor-reproducibility/updated-application-instructions-enhance-rigor-reproducibility [Accessed 01 May 2017]

  • National Institutes of Health (n.d.) Rigor and reproducibility. https://www.nih.gov/research-training/rigor-reproducibility [Accessed 01 May 2017]

  • Niknam Y, Feng W, Cherednichenko G, Dong Y, Joshi SN, Vyas SM, Lehmler H-J, Pessah IN (2013) Structure-activity relationship of select meta- and para-hydroxylated non-dioxin-like polychlorinated biphenyls: from single RyR1 channels to muscle dysfunction. Toxicol Sci 136:500–513

    Article  CAS  Google Scholar 

  • O’Keefe DF, Dannock MC, Marcuccio SM (1992) Palladium catalysed coupling of halobenzenes with arylboronic acids: rôle of the triphenylphosphine ligand. Tetrahedron Lett 33:6679–6680

    Article  Google Scholar 

  • Parkinson A, Safe SH, Robertson LW, Thomas PE, Ryan DE, Reik LM, Levin W (1983) Immunochemical quantitation of cytochrome P-450 isozymes and epoxide hydrolase in liver microsomes from polychlorinated or polybrominated biphyenyl-treated rats. A study of structure-activity relationships. J Biol Chem 258:5967–5976

    CAS  Google Scholar 

  • Penelope (n.d.) Equator-wizard. http://www.peneloperesearch.com/equator-wizard [Accessed 01 May 2017]

  • Pessah IN, Stambuk RA, Casida JE (1987) Ca2+-activated ryanodine binding: mechanisms of sensitivity and intensity modulation by Mg2+, caffeine, and adenine nucleotides. Mol Pharmacol 31:232–238

    CAS  Google Scholar 

  • Pessah IN, Hansen LG, Albertson TE, Garner CE, Ta TA, Do Z, Kim KH, Wong PW (2006) Structure-activity relationship for noncoplanar polychlorinated biphenyl congeners toward the ryanodine receptor-Ca2+ channel complex type 1 (RyR1). Chem Res Toxicol 19:92–101

    Article  CAS  Google Scholar 

  • Pessah IN, Lehmler H-J, Robertson LW, Perez CF, Cabrales E, Bose DD, Feng W (2009) Enantiomeric specificity of (-)-2,2′,3,3′,6,6′-hexachlorobiphenyl toward ryanodine receptor types 1 and 2. Chem Res Toxicol 22:201–207

    Article  CAS  Google Scholar 

  • Pessah IN, Cherednichenko G, Lein PJ (2010) Minding the calcium store: ryanodine receptor activation as a convergent mechanism of PCB toxicity. Pharmacol Ther 125:260–285

    Article  CAS  Google Scholar 

  • Peterman PH, Feltz KP, Orazio CE, Echols KR (2006) Basic alumina flash chromatographic separation of bulk ortho-PCBs from non-ortho-PCBs, PBDEs, PCDFs, PCDDs, PCDTs, OCPs, and PCTs. Organohalogen Compd 68:2458–2461

    CAS  Google Scholar 

  • Pham-Tuan H, Larsson C, Hoffmann F, Bergman A, Froeba M, Huehnerfuss H (2005) Enantioselective semipreparative HPLC separation of PCB metabolites and their absolute structure elucidation using electronic and vibrational circular dichroism. Chirality 17:266–280

    Article  CAS  Google Scholar 

  • Porter ML, Burke JA (1971) Separation of three chlorodibenzon-p-dioxins from some polychlorinated biphenyls by chromatography on an aluminum oxide column. J Assoc Off Anal Chem 54:1426–1428

    CAS  Google Scholar 

  • Püttmann M, Oesch F, Robertson LW (1986) Characteristics of polychlorinated biphenyl (PCB) atropisomers. Chemosphere 15:2061–2064

    Article  Google Scholar 

  • Rayne S, Forest K (2010) Quantitative structure-activity relationship (QSAR) studies for predicting activation of the ryanodine receptor type 1 channel complex (RyR1) by polychlorinated biphenyl (PCB) congeners. J Environ Sci Health A Tox Hazard Subst Environ Eng 45:355–362

    Article  CAS  Google Scholar 

  • Rignall B, Grote K, Gavrilov A, Weimer M, Kopp-Schneider A, Krause E, Appel KE, Buchmann A, Robertson LW, Lehmler HJ, Kania-Korwel I, Chahoud I, Schwarz M (2013) Biological and tumor-promoting effects of dioxin-like and non-dioxin-like polychlorinated biphenyls in mouse liver after single or combined treatment. Toxicol Sci 133:29–41

    Article  CAS  Google Scholar 

  • Saeki S, Yoshihara S, Uchino Y, Yoshimura H (1979) Improved method of the synthesis of 3,4,5,3′,4′-pentachlorobiphenyl. Fukuoka Igaku Zasshi 70:85–87

    CAS  Google Scholar 

  • Safe SH (1994) Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 24:87–149

    Article  CAS  Google Scholar 

  • Safe S, Hutzinger O (1972) The mass spectra of polychlorinated biphenyls. J Chem Soc Perkin Trans I, 686–691

  • Schramm H, Robertson LW, Oesch F (1985) Differential regulation of hepatic glutathione transferase and glutathione peroxidase activities in the rat. Biochem Pharmacol 34:3735–3739

    Article  CAS  Google Scholar 

  • Schuetz EG, Brimer C, Schuetz JD (1998) Environmental xenobiotics and the antihormones cyproterone acetate and spironolactone use the nuclear hormone pregnenolone X receptor to activate the CYP3A23 hormone response element. Mol Pharmacol 54:1113–1117

    Article  CAS  Google Scholar 

  • Shaikh NS, Parkin S, Lehmler H-J (2006) The Ullmann coupling reaction: a new approach to tetraarylstannanes. Organometallics 25:4207–4214

    Article  CAS  Google Scholar 

  • Song Y, Buettner GR, Parkin S, Wagner BA, Robertson LW, Lehmler H-J (2008) Chlorination increases the persistence of semiquinone free radicals derived from polychlorinated biphenyl hydroquinones and quinones. J Org Chem 73:8296–8304

    Article  CAS  Google Scholar 

  • Storrhansen E, Cleemann M, Cederberg T, Jansson B (1992) Selective retention of non-ortho substituted coplanar chlorinated biphenyl congeners on adsorbents for column chromatography. Chemosphere 24:323–333

    Article  Google Scholar 

  • Tas AC, Kleipool RJ (1972) Characterization of components of technically polychlorinated biphenyl mixtures-II. Bull Environ Contam Toxicol 8:32–37

    Article  CAS  Google Scholar 

  • Telu S, Parkin S, Robertson LW, Lehmler H-J (2010) Improved syntheses of non-dioxin-like polychlorinated biphenyls (PCBs) and some of their sulfur-containing metabolites. Environ Int 36:828–834

    Article  CAS  Google Scholar 

  • Toda M, Matsumura C, Tsurukawa M, Okuno T, Nakano T, Inoue Y, Mori T (2012) Absolute configuration of atropisomeric polychlorinated biphenyl 183 enantiomerically enriched in human samples. J Phys Chem A 116:9340–9346

    Article  CAS  Google Scholar 

  • U.S. National Library of Medicine (n.d.) Research reporting guidelines and initiatives: by organization. https://www.nlm.nih.gov/services/research_report_guide.html [Accessed 01 May 2017]

  • Uwimana E, Maiers A, Li X, Lehmler HJ (2017) Microsomal metabolism of prochiral polychlorinated biphenyls results in the enantioselective formation of chiral metabolites. Environ Sci Technol 51:1820–1829

    Article  CAS  Google Scholar 

  • Vyas SM, Parkin S, Lehmler H-J (2006) 2,2′,3,4,4′,5,5′-Heptachlorobiphenyl (PCB 180). Acta Crystallogr Sect E E62:o2905–o2906

    Article  CAS  Google Scholar 

  • Wahlang B, Falkner KC, Clair HB, Al-Eryani L, Prough RA, States JC, Coslo DM, Omiecinski CJ, Cave MC (2014) Human receptor activation by Aroclor 1260, a polychlorinated biphenyl mixture. Toxicol Sci 140:283–297

    Article  CAS  Google Scholar 

  • Waller SC, Mash EA (1997) Improved syntheses of 2,2′,3,3′,6,6′-hexachlorobiphenyl. Org Prep Proced Int 29:679–685

    Article  CAS  Google Scholar 

  • Waller SC, He YA, Harlow GR, He YQ, Mash EA, Halpert JR (1999) 2,2′,3,3′,6,6′-Hexachlorobiphenyl hydroxylation by active site mutants of cytochrome P450 2B1 and 2B11. Chem Res Toxicol 12:690–699

    Article  CAS  Google Scholar 

  • Webb RG, Mccall AC (1972) Identities of polychlorinated biphenyl isomers in Aroclors. J Assoc Off Anal Chem 55:746–752

    CAS  Google Scholar 

  • Wong PW, Pessah IN (1996) Ortho-substituted polychlorinated biphenyls alter calcium regulation by a ryanodine receptor-mediated mechanism: structural specificity toward skeletal- and cardiac-type microsomal calcium release channels. Mol Pharmacol 49:740–751

    CAS  Google Scholar 

  • World Health Organization (2016) Safety evaluation of certain food additives and contaminants. Supplement 1: non-dioxin-like polychlorinated biphenyls. WHO food additives series; 71-S1. apps.who.int/iris/bitstream/10665/246225/1/9789241661713-eng.pdf [Accessed 01 May 2017]

  • Wu X, Pramanik A, Duffel MW, Hrycay EG, Bandiera SM, Lehmler H-J, Kania-Korwel I (2011) 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) is enantioselectively oxidized to hydroxylated metabolites by rat liver microsomes. Chem Res Toxicol 24:2249–2257

    Article  CAS  Google Scholar 

  • Zhu Y, Mapuskar KA, Marek RF, Xu W, Lehmler HJ, Robertson LW, Hornbuckle KC, Spitz DR, Aykin-Burns N (2013) A new player in environmentally induced oxidative stress: polychlorinated biphenyl congener, 3,3′-dichlorobiphenyl (PCB11). Toxicol Sci 136:39–50

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project described was supported by grants ES04699, ES05605, ES011269, ES013661, ES014901, and ES017425 from the National Institute of Environmental Health Sciences/National Institutes of Health. The content of the manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Environmental Health Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Lehmler.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOC 1179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Holland, E.B., Feng, W. et al. Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environ Sci Pollut Res 25, 16508–16521 (2018). https://doi.org/10.1007/s11356-017-1162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-1162-0

Keywords

Navigation