Skip to main content

Advertisement

Log in

Origin and effect factors of sedimentary organic carbon in a karst groundwater-fed reservoir, South China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Reservoirs are commonly recharged by groundwater that is rich in bicarbonate ions in karst regions of South China, and the recharge of this groundwater to the reservoir can affect the biogeochemical processes of carbon sedimentation at the reservoir bottom. In this study, Dalongdong Reservoir, which is mainly recharged by two subterranean streams, was investigated based on a 42-cm-thick sedimentary core and the 210Pb/137Cs dating technique and isotope analyses to understand the sedimentary history and identify the carbon sources. The 210Pb/137Cs age model showed that the sediments were accumulated over the last 60 years. The annual increase precipitation and temperature showed no obvious change compared with trends of δ13C in total organic carbon (δ13Corg), δ15N values in total nitrogen, and the carbon and nitrogen ratio (C/N). This shows that climate was not the main control of the variation in sediment factors. Based on δ13Corg, δ15N, C/N, and isotopic mixing modeling, sources of organic carbon in the sediments were derived from plankton (60.84%), soil (22.93%), waste water (14.56%), and terrestrial plants (1.67%). From 1958 to 1978, reservoir establishment and leakage affected the contribution of the four sources. The contribution of the plankton source increased from 1978 to 2015, resulting from change of water level and continued input of external nitrogen. However, because of the revegetation supplied by an economic aid project the contribution of soil showed a considerable decreasing trend from 1978 to 2002. After 2002, For “Grain for Green” project, the contribution from soil further decreased. After reservoir construction, the contribution of waste water stabilized. The contribution of terrestrial plants started increased rapidly after 2002. Karst groundwater, which contains more dissolved inorganic carbon containing lower δ13CDIC than the water sources of other lakes or reservoirs, makes the δ13Corg value of sediment more negative by phytoplankton photosynthesis in the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad K, Davies C (2017) Stable isotope (δ13C and δ15N) based interpretation of organic matter source and paleoenvironmental conditions in Al-Azraq basin, Jordan. Appl Geochem 78:49–60. https://doi.org/10.1016/j.apgeochem.2016.12.004

    Article  CAS  Google Scholar 

  • Appleby PG (2002) Chronostratigraphic techniques in recent sediments. Tracking environmental change using lake sediments. Springer, Netherlands, pp 171–203

    Book  Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported Pb-210 in the sediment. Catena 5(1):1–8. https://doi.org/10.1016/S0341-8162(78)80002-2

    Article  CAS  Google Scholar 

  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9(1):53–60. https://doi.org/10.1890/100014

    Article  Google Scholar 

  • Bai YY, Cui CL, YZ Y (2005) Discussion on the slope stability of reservoirs. Geol Res 14:213–215

    Google Scholar 

  • Baskaran M, Nix J, Kuyper C, Karunakara N (2014) Problems with the dating of sediment core using excess (210)Pb in a freshwater system impacted by large scale watershed changes. J Environ Radioact 138:355–363. https://doi.org/10.1016/j.jenvrad.2014.07.006

    Article  CAS  Google Scholar 

  • Bertrand S, Sterken M, Vargasramirez L, Batist MD, Vyverman W, Lepoint G, Fagel N (2010) Bulk organic geochemistry of sediments from Puyehue Lake and its watershed (Chile, 40°S): implications for paleoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 294(1-2):56–71. https://doi.org/10.1016/j.palaeo.2009.03.012

    Article  Google Scholar 

  • Binford MW (1990) Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol 3:253–267

    Article  Google Scholar 

  • Cai WJ, Guo XH, Chen CA, Dai MH, Zhang LJ, Zhai WD, Lohrenz SE, Yin KD, Harrison PJ, Wang YC (2008) A comparative overview of weathering intensity and HCO3 flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont Shelf Res 28(12):1538–1549. https://doi.org/10.1016/j.csr.2007.10.014

  • Cao JH, Zhou L, Yang H, Lu Q, Kang ZQ (2011) Comparison of carbon transfer between forest soils in karst and clasolite areas and the karst carbon sink effect in Maochun Village of Guilin. Quat Sci 31:431–437

    CAS  Google Scholar 

  • Cao Y, Guo ZC, Wang QQ, Jiao RC (2016) Reaserch on spatial differentistion of precipitation infiltration recharge condition based on remote sensing technology. Remote Sensing for Land and Resources 28:91–95

    Google Scholar 

  • Caron DA, Lim EL, Sanders RW, Dennett MR, Berninger UG (2000) Responses of bacterioplankton and phytoplankton to organic carbon and inorganic nutrient additions in contrasting oceanic ecosystems. Aquat Microb Ecol 22:175–184. https://doi.org/10.3354/ame022175

    Article  Google Scholar 

  • Chau NL, Chu LM (2017) Fern cover and the importance of plant traits in reducing erosion on steep soil slopes. Catena 151:98–106. https://doi.org/10.1016/j.catena.2016.12.016

    Article  Google Scholar 

  • Chen JA, Wan GJ, Huang RG (2000) Recent climatic changes and the chemical records in Chenghai Lake. Mar Geol Quat Geol 20:39–42

    Google Scholar 

  • Chen BS, Zheng Z, Huang KY, Zheng YW, Zhang GF, Zhang QH, Huang XL (2014) Radionuclide dating of recent sediment and the validation of pollen-environment reconstruction in a small watershed reservoir in southeastern China. Catena 115:29–38. https://doi.org/10.1016/j.catena.2013.11.010

    Article  CAS  Google Scholar 

  • Cole JJ, Carpenter SR, Kitchell JF, Pace MJ (2002) Pathways of organic carbon utilization in small lakes: results from a whole-lake 13C addition and coupled model. Limnol Oceanogr 47(6):1664–1675. https://doi.org/10.4319/lo.2002.47.6.1664

    Article  CAS  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–185. https://doi.org/10.1007/s10021-006-9013-8

    Article  CAS  Google Scholar 

  • Comans RNJ, Middelburg JJ, Zonderhuis J, Woittiez JW, Delange G, Das HA, Weijden CHV (1989) Mobilization of radiocaesium in pore water of lake sediments. Nature 339(6223):367–369. https://doi.org/10.1038/339367a0

    Article  CAS  Google Scholar 

  • Das B, Nordin R, Mazumder A (2008) An alternative approach to reconstructing organic matter accumulation with contrasting watershed disturbance histories from lake sediments. Environ Pollut 155(1):117–124. https://doi.org/10.1016/j.envpol.2007.10.031

    Article  CAS  Google Scholar 

  • Das GA, Sarkar S, Singh J, Saha T, Sil AK (2016) Nitrogen dynamics of the aquatic system is an important driving force for efficient sewage purification in single pond natural treatment wetlands at East Kolkata Wetland. Chemospher 164:576–584

    Article  CAS  Google Scholar 

  • Dean WE, Gorham E (1998) Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26(6):535–538. https://doi.org/10.1130/0091-7613(1998)026<0535:MASOCB>2.3.CO;2

    Article  Google Scholar 

  • Deng Y, Jiang ZC, Li YQ, Hu Y (2015) Water sources of typical plants in different rocky desertification grades in Guangxi. Tropical Geography 35:416–421

    Google Scholar 

  • Deutsch B, Mewes M, Liskow I, Voss M (2006) Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate. Org Geochem 37(10):1333–1342. https://doi.org/10.1016/j.orggeochem.2006.04.012

    Article  CAS  Google Scholar 

  • Dillon PJ, Molot LA (1997) Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry 36(1):29–42. https://doi.org/10.1023/A:1005731828660

    Article  CAS  Google Scholar 

  • Donagh MEM, Casco MA, Claps MC (2009) Plankton relationships under small water level fluctuations in a subtropical reservoir. Aquat Ecol 43(2):371–381. https://doi.org/10.1007/s10452-008-9197-4

    Article  Google Scholar 

  • Downing JP, Meybeck M, Orr JC, Twilley RR, Scharpenseel HW (1993) Land and water interface zones. In: Terrestrial biospheric carbon fluxes quantification of sinks and sources of CO2. Springer, Netherlands, pp 123–137. https://doi.org/10.1007/978-94-011-1982-5_8

    Chapter  Google Scholar 

  • Dunn RJK, Welsh DT, Teasdale PR, Lee SY, Lemckert CJ, Meziane T (2008) Investigating the distribution and sources of organic matter in surface sediment of Coombabah Lake (Australia) using elemental, isotopic and fatty acid biomarkers. Cont Shelf Res 28(18):2535–2549. https://doi.org/10.1016/j.csr.2008.04.009

    Article  Google Scholar 

  • Eriksson M, Villand P, Gardestrm P, Samuelsson G (1998) Induction and regulation of expression of a low-CO2 -induced mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 116(2):637–641. https://doi.org/10.1104/pp.116.2.637

    Article  CAS  Google Scholar 

  • Evans DW, Alberts JL, Clark RA (1983) Reversible ion-exchange fixation of cesium-137 leading to mobilization from reservoir sediments. Geochim Cosmochim Acta 47(6):1041–1049. https://doi.org/10.1016/0016-7037(83)90234-X

    Article  CAS  Google Scholar 

  • Finlay K, Leavitt PR, Patoine A, Wissel B (2010) Magnitudes and controls of organic and inorganic carbon flux through a chain of hardwater lakes on the northern Great Plains. Limnol Oceanogr 55(4):1551–1564. https://doi.org/10.4319/lo.2010.55.4.1551

    Article  CAS  Google Scholar 

  • Fridlyand LE, Backhausen JE, Holtgrefe S, Kitzmann C, Scheibe R (1997) Quantitative evaluation of the rate of 3-phosphoglycerate reduction in chloroplasts. Plant Cell Physiol 38(11):1177–1186. https://doi.org/10.1093/oxfordjournals.pcp.a029104

    Article  CAS  Google Scholar 

  • Fu YH, Huang ZS, Yu LF (2012) Changes of foliar δ13C value of Quercus fabric in different root underground habitat types in Karst area. Chin J Appl Ecol 23:2961–2967

  • Han Q, Wang BL (2017) Mechanism of stable carbon isotope fractionation by phytoplankton and its environmental applications. Chin J Ecol 36:1436–1443

    Google Scholar 

  • He SY, Pan GX, Cao JH, Tao YX, Teng YZ (2000) Research on characteristics of carbon cycle in epi-karst ecological system. Quat Sci 20:382–390

    Google Scholar 

  • Hepburn CD, Pritchard DW, Cornwall CE, Mcleod RJ, Beardall J, Raven JA, Hurd CL (2011) Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob Chang Biol 17(7):2488–2497. https://doi.org/10.1111/j.1365-2486.2011.02411.x

    Article  Google Scholar 

  • Hu ZL, Pan GX, Li LQ, Du YX, Wang XZ (2009) Changes in pools and heterogeneity of soil organic carbon, nitrogen and phosphorus under different vegetation types in Karst mountainous area of central Guizhou Province, China. Acta Ecol Sin 29:4187–4195

  • Hudon C, Lalonde S, Gagnon P (2011) Ranking the effects of site exposure, plant growth form, water depth. Can J Fish Aquat Sci 57:31–42

    Article  Google Scholar 

  • Jerry CJ, Roger MH, Angela C (1973) Dating recent reservoir sediments. Limnol Oceanogr 18(2):254–263. https://doi.org/10.4319/lo.1973.18.2.0254

    Article  Google Scholar 

  • Jia GD, Chen FJ, Deng WF (2012) Seasonal variations of dissolved inorganic carbon isotope in the Beijiang River. Earth Sci-J China Univ Geosci 37:365–369

    CAS  Google Scholar 

  • Junge CE, Schidlowski M, Eichmann R, Pietrek H (1975) Model calculations for the terrestrial carbon cycle: carbon isotope geochemistry and evolution of photosynthetic oxygen. J Geophys Res 80:4542–4552

  • Jweda J, Baskaran M (2011) Interconnected riverine-lacustrine systems as sedimentary repositories: a case study in southeast Michigan using excess 210Pb- and 137Cs-based sediment accumulation and mixing models. J Gt Lakes Res 37(3):432–446. https://doi.org/10.1016/j.jglr.2011.04.010

    Article  CAS  Google Scholar 

  • Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50(1):539–570. https://doi.org/10.1146/annurev.arplant.50.1.539

    Article  CAS  Google Scholar 

  • Kim HS, Hwang SJ, Shin JK, An KG, Yoon CG (2007) Effects of limiting nutrients and N:P ratios on the phytoplankton growth in a shallow hypertrophic reservoir. Hydrobiologia 581(1):255–267. https://doi.org/10.1007/s10750-006-0501-9

    Article  CAS  Google Scholar 

  • Kirchner G (2011) 210Pb as a tool for establishing sediment chronologies: examples of potentials and limitations of conventional dating models. J Environ Radioact 102(5):490–494. https://doi.org/10.1016/j.jenvrad.2010.11.010

    Article  CAS  Google Scholar 

  • Kreitler CW, Browning LA (1983) Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers: natural sources versus human pollution. J Hydrol 61(1-3):285–301. https://doi.org/10.1016/0022-1694(83)90254-8

    Article  CAS  Google Scholar 

  • Kreitler CW, Jones DC (1975) Natural soil nitrate: the cause of the nitrate contamination of ground water in Runnels County, Texas. Ground Water 13(1):53–62. https://doi.org/10.1111/j.1745-6584.1975.tb03065.x

    Article  Google Scholar 

  • Krishnaswamy S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11(1-5):407–414. https://doi.org/10.1016/0012-821X(71)90202-0

    Article  CAS  Google Scholar 

  • Kulikowska D, Gusiatin ZM (2015) Sewage sludge composting in a two-stage system: carbon and nitrogen transformations and potential ecological risk assessment. Waste Manag 38:312–320. https://doi.org/10.1016/j.wasman.2014.12.019

    Article  CAS  Google Scholar 

  • Lao W (2004) Experience of seepage control and leak stoppage grouting in the Dalongdong Reservoir. Hongshui River 4:28–31

    Google Scholar 

  • Last WM, Smol JP (2001) Tracking environmental change using lake sediments, volume 1: basin analysis, coring, and chronological techniques. Kluwer Academic Publishers: 171–196

  • Li DH, Su XM (2012) The studies on the food web structures and trophic relationships in Guangxi Dongfang Cave by means of stable carbon and nitrogen isotopes. Acta Ecol Sin 32:3497–3504

    Article  CAS  Google Scholar 

  • Li J, Xiao HY, Zhu ZZ, Wang LS, Wang ML (2009) Historical eutrophication in Wuli Bay of Taihu Lake, China, based on carbon isotope record. Chin J Ecol 28:2245–2249

    Google Scholar 

  • Li TY, Li HC, Xiang XJ, Guo ZX, Li JY, Zhou FL, Chen HL, Peng LL (2012a) Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area. Sci China Earth Sci 55(4):685–694. https://doi.org/10.1007/s11430-011-4294-y

    Article  Google Scholar 

  • Li XZ, Liu WG, Xu LM (2012b) Carbon isotopes in surface-sediment carbonates of modern Lake Qinghai (Qinghai–Tibet Plateau): implications for lake evolution in arid areas. Chem Geol 300–301:88–96

    Article  CAS  Google Scholar 

  • Li T, Xia W, Huang YM, Chen JR, Zhang ML, Zhu XY (2013) Stable carbon isotopic composition and seasonal varying characteristics of karst soil and vegetation in Guilin. J South Agric 44:968–973

    CAS  Google Scholar 

  • Li W, He L, Zhu TS, Cao T, Zhang XL, Ni LY (2014) Distribution and leaf C, N, P stoichiometry of Vallisnerria natans in response to various water depths in a large mesotrophic lake, Lake Erhai, China. J Lake Sci 26:585–592

    Article  CAS  Google Scholar 

  • Li JH, Pu JB, Sun PA, Yuan DX, Liu W, Zhang T, Mo X (2015a) Summer greenhouse gases exchange flux across water-air interface in three water reservoirs located in different geologic setting in Guangxi, China. Environ Sci 36:4032–4042

    Google Scholar 

  • Li JH, Pu JB, Yuan DX, Liu W, Xiao Q, Yu S, Zhang T, Mo X, Sun PA, Pan MC (2015b) Variations of inorganic carbon and its impact factors in surface-layer waters in a groundwater-fed reservoir in karst area, SW China. Environ Sci 36:2833–2842

  • Li CL, Li Q, Zhao L, Ge SD, Chen DD, Dong QM, Zhao XQ (2016a) Land-use effects on organic and inorganic carbon patterns in the topsoil around Qinghai Lake basin, Qinghai-Tibetan Plateau. Catena 147:345–355. https://doi.org/10.1016/j.catena.2016.07.040

    Article  CAS  Google Scholar 

  • Li XZ, Zhou X, Liu WG, Wang Z, He YX, Xu LM (2016b) Carbon and oxygen isotopic records from Lake Tuosu over the last 120years in the Qaidam Basin, Northwestern China: the implications for paleoenvironmental reconstruction. Glob Planet Chang 141:54–62. https://doi.org/10.1016/j.gloplacha.2016.04.006

  • Liu EF, Xu EB, Yang XD, Wu YH, Xia WL (2009) 137Cs and 210Pb chronology for modern lake sediment: a case study of Chaohu Lake and Taibai Lake. Mar Geol Quat Geol 29:89–94

    Article  Google Scholar 

  • Liu WG, Li XZ, An ZS, Xu LM, Zhang QL (2013) Total organic carbon isotopes: a novel proxy of lake level from Lake Qinghai in the Qinghai–Tibet Plateau, China. Chem Geol 347:153–160. https://doi.org/10.1016/j.chemgeo.2013.04.009

  • López P, Marcé R, Armengol J (2015) Net heterotrophy and CO2 evasion from a productive calcareous reservoir: adding complexity to the metabolism-CO2 evasion issue. J Geophys Res Biogeosci 116:1602–1602

    Google Scholar 

  • Lu XQ, Matsumoto E (2009) Implications of excess 210Pb and 137Cs in sediment cores from Mikawa Bay, Japan. J Environ Sci 21:707–712

    Article  CAS  Google Scholar 

  • Matsumoto E (1987) Pb-210 geochronology of sediments. Nat Environ 3:187–194

    Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 144:289–302

    Article  Google Scholar 

  • Meyers PA, Eadie BJ (1993) Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Org Geochem 2:47–56

    Article  Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediment. Org Geochem 20(7):867–900. https://doi.org/10.1016/0146-6380(93)90100-P

    Article  CAS  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediment. Physical and geochemical methods, vol 2. Kluwer Academic, Dordrecht, pp 239–270

    Chapter  Google Scholar 

  • Muri G, Wakeham SG (2006) Organic matter and lipids in sediments of Lake Bled (NW Slovenia): source and effect of anoxic and oxic depositional regimes. Org Geochem 37(12):1664–1679. https://doi.org/10.1016/j.orggeochem.2006.07.016

    Article  CAS  Google Scholar 

  • Ni ZK, Li YJ, Wang SR, Jin XC, Chu ZS (2011) The sources of organic carbon and nitrogen in sediment of Taihu Lake. Acta Ecol Sin 31:4661–4670

    CAS  Google Scholar 

  • Paronuzzi P, Rigo E, Bolla A (2013) Influence of filling–drawdown cycles of the Vajont reservoir on Mt. Toc slope stability. Geomorphology 191:75–93. https://doi.org/10.1016/j.geomorph.2013.03.004

    Article  Google Scholar 

  • Peng JT, Hu RZ (2001) Carbon and oxygen isotope systematic in the Xikuangshan giant antimony deposit, Central Hunan. Geol Rev 47:34–41

    Google Scholar 

  • Phillips DL, Koch PL (2002) Incorporating concentration dependence in stable isotope mixing models. Oecologia 130(1):114–125. https://doi.org/10.1007/s004420100786

    Article  Google Scholar 

  • Poraj-Górska AI, Żarczyński MJ, Ahrens A, Enters D, Weisbrodt D, Tylmann W (2017) Impact of historical land use changes on lacustrine sedimentation recorded in varved sediments of Lake Jaczno, northeastern Poland. Catena 153:182–193. https://doi.org/10.1016/j.catena.2017.02.007

    Article  CAS  Google Scholar 

  • Pu Y, Nace T, Meyers PA, Zhang HC, Wang YL, Zhang CLL, Shao XH (2013) Paleoclimate changes of the last 1000 yr on the eastern Qinghai–Tibetan Plateau recorded by elemental, isotopic, and molecular organic matter proxies in sediment from glacial Lake Ximencuo. Palaeogeogr Palaeoclimatol Palaeoecol 379–380:39–53

    Article  Google Scholar 

  • Ranjan RK, Routh J, Ramanathan AL (2010) Bulk organic matter characteristics in the Pichavaram mangrove–estuarine complex, south-eastern India. Appl Geochem 25(8):1176–1186. https://doi.org/10.1016/j.apgeochem.2010.05.003

    Article  CAS  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humboorg C, Kortelainen P, Durr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503(7476):355–359. https://doi.org/10.1038/nature12760

    Article  CAS  Google Scholar 

  • Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta 39(3):285–304. https://doi.org/10.1016/0016-7037(75)90198-2

    Article  CAS  Google Scholar 

  • Sacks LA, Lee TM, Swancar A (2014) The suitability of a simplified isotope-balance approach to quantify transient groundwater–lake interactions over a decade with climatic extremes. J Hydrol 519:3042–3053. https://doi.org/10.1016/j.jhydrol.2013.12.012

    Article  CAS  Google Scholar 

  • Sarkar S, Ghosh PB, Mukherjee K, Kumar S, Saha T (2009) Sewage treatment in a single pond system at East Kolkata Wetland, India. Water Sci Technol J Int Assoc Water Pollut Res 60(9):2309–2317. https://doi.org/10.2166/wst.2009.673

    Article  CAS  Google Scholar 

  • Schelske CL, Hodell DA (1995) Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnol Oceanogr 40(5):918–929. https://doi.org/10.4319/lo.1995.40.5.0918

    Article  CAS  Google Scholar 

  • Simms AD, Woodroffe C, Jones BG, Heijnis H, Mann RA, Harrison J (2008) Use of 210Pb and 137Cs to simultaneously constrain ages and sources of post-dam sediments in the Cordeaux reservoir, Sydney, Australia. J Environ Radioact 99(7):1111–1120. https://doi.org/10.1016/j.jenvrad.2008.01.002

    Article  CAS  Google Scholar 

  • Sobek S, Algesten G, Bergstrom AK, Jansson M, Tranvik LJ (2003) The catchment and climate regulation of pCO2 in boreal lakes. Glob Chang Biol 9(4):630–641. https://doi.org/10.1046/j.1365-2486.2003.00619.x

    Article  Google Scholar 

  • Stuiver M (1975) Climate versus changes in 13C content of the organic component of lake sediments during the Late Quarternary. Quat Res 5(02):251–262. https://doi.org/10.1016/0033-5894(75)90027-7

    Article  CAS  Google Scholar 

  • Sun GH, Yang YT, Jiang W, Heng H (2017) Effects of an increase in reservoir drawdown rate on bank slope stability: a case study at the Three Gorges Reservoir, China. Eng Geol 221:61–69. https://doi.org/10.1016/j.enggeo.2017.02.018

    Article  Google Scholar 

  • Swarzenski PW, Baskaran M, Rosenbauer RJ, Orem WH (2006) Historical trace element distribution in sediments from the Mississippi River delta. Estuar Coast 29(6):1094–1107. https://doi.org/10.1007/BF02781812

    Article  CAS  Google Scholar 

  • Tang FK, Zhou JX, Cui M, Liu YG, Lei RG (2014a) Effects of different returning farmland to forestlands on accumulation of soil organic carbon and nitrogen in typical karst area of southwestern China. J Beijing For Univ 36:44–50

    Google Scholar 

  • Tang WK, Tao Z, Gao QZ, Mao HR, Jiang GH, Jian SL, Zheng XB, Zhang QZ, Ma ZW (2014b) Biogeochemical processes of the major ions and dissolved inorganic carbon in the Guijiang River. Environ Sci 35:2099–2107

    CAS  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, Wachenfeldt EV, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6part2):2298–2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298

    Article  CAS  Google Scholar 

  • Wan GJ, Bai ZG, Qing H, Mather JD, Huang RG, Wang HR, Tang DG, Xiao BH (2003) Geochemical records in recent sediments of Lake Erhai: implications for environmental changes in a low latitude–high altitude lake in southwest China. J Asian Earth Sci 21(5):489–502. https://doi.org/10.1016/S1367-9120(02)00076-7

    Article  Google Scholar 

  • Wan GJ, Chen JA,Wu FC, Xu SQ, Bai ZG, Wan EY, Wang CS, Huang RG, Yeager KM, Santschi PH (2005) Coupling between 210Pbex and organic matter in sediments of a nutrient-enriched lake: an example from Lake Chenghai, China. Chem Geol 224(4):223–236. https://doi.org/10.1016/j.chemgeo.2005.07.025

  • Wan YP, Yin KH, Peng SH (2015) Response of algae to nitrogen and phosphorus concentration and quantity of pumping water in pumped storage reservoir. Environ Sci 36:2054–2060

    Google Scholar 

  • Wang ZJ, Liang X, He QF, Yuan DX (2011) Differential characteristics of soil δ15N under varying vegetation in karst areas. Acta Ecol Sin 31:4970–4976

    CAS  Google Scholar 

  • Wang SR, Jiao LX, Yang SW, Jin XC, Yi WL (2012) Effects of organic matter and submerged macrophytes on variations of alkaline phosphatase activity and phosphorus fractions in lake sediment. J Environ Manag 113:355–360. https://doi.org/10.1016/j.jenvman.2012.09.007

    Article  CAS  Google Scholar 

  • Wang Y, Liu D, Richard P, Li X (2013) A geochemical record of environmental changes in sediments from Sishili Bay, northern Yellow Sea, China: anthropogenic influence on organic matter sources and composition over the last 100 years. Mar Pollut Bull 77(1-2):227–236. https://doi.org/10.1016/j.marpolbul.2013.10.001

    Article  CAS  Google Scholar 

  • Wayland M, Hobson KA (2001) Stable carbon, nitrogen, and sulfur isotope ratios in riparian food webs on rivers receiving sewage and pulp-mill effluents. Can J Zool 79(1):5–15. https://doi.org/10.1139/z00-169

    Article  CAS  Google Scholar 

  • Wei ZX, Su GY (1999) Karst leakage treatment in the Dalongdong Reservoir. Pearl River 1:48–52

    Google Scholar 

  • Weyhenmeyer GA, Kosten S, Wallin MB, Tranvik LJ, Jeppesen E, Roland F (2015) Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nat Geosci 8(12):933–936. https://doi.org/10.1038/ngeo2582

    Article  CAS  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Allet WM (1998) Ground water and surface water: a single resource. Usgs U.s.geological Survey: 1139

  • Woszczyk M, Bechtel A, Gratzer R, Kotarba MJ, Kokocinski M, Fiebig J, Cieslinski R (2011) Composition and origin of organic matter in surface sediments of Lake Sarbsko: a highly eutrophic and shallow coastal lake (northern Poland). Org Geochem 42(9):1025–1038. https://doi.org/10.1016/j.orggeochem.2011.07.002

    Article  CAS  Google Scholar 

  • Wu FH, Pu JB, Li JH, Zhang T, Li L, Huang SY (2017) Impacts of thermal stratification on the hydrochemistry and dissolved inorganic carbon in a typical karst reservoir in summer. Environ Sci. https://doi.org/10.13227/j.hjkx.201703138

  • Xia XH, Wu Q, Zhu BT, Zhao PJ, Zhang SW, Yang LY (2015) Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes. Sci Total Environ 523:64–73. https://doi.org/10.1016/j.scitotenv.2015.03.140

    Article  CAS  Google Scholar 

  • Xie ZL, He J, Lv CW, Zhang RQ, Zhou B, Mao HF, Song WJ, Zhao WC, Hou DK, Wang JH, Li YF (2015) Organic carbonfractions and estimation of organic carbon storage in the lake sediments in Inner Mongolia Plateau, China. Environ Earth Sci 73(5):2169–2178. https://doi.org/10.1007/s12665-014-3568-z

    Article  CAS  Google Scholar 

  • Xu H, Ai L, Tan L, Tan LC, An ZS (2006) Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications. Chem Geol 235(3-4):262–275. https://doi.org/10.1016/j.chemgeo.2006.07.005

    Article  CAS  Google Scholar 

  • Yang C, Liu CQ, Song ZL, Liu ZM, Zheng HY (2008) Distribution characteristics of carbon , nitrogen and sulphur of plants and soils in Guizhou karst mountain area, southwestern China. J Beijing For Univ 30:45–51

    CAS  Google Scholar 

  • Yang H, Li QF, Tu CY, Cao JH (2015) Carbon, nitrogen and phosphorus stoichiometry of typical plants in karst area of Maocun, Ginlin. Guihaia 35:493–499

    CAS  Google Scholar 

  • Yang MX, Liu ZH, Sun HL, Yang R, Chen B (2017) Organic carbon source tracing and DIC fertilization effect in the Pearl River: insights from lipid biomarker. Earth Environ 45:46–56

    Google Scholar 

  • Yu ZT, Wang XJ, Zhao CY, Lan HY (2015) Carbon burial in Bosten Lake over the past century: impacts of climate change and human activity. Chem Geol 419:132–141

    Article  CAS  Google Scholar 

  • Yuan WH, Su YR, Zhen H, Huang DY, Wu JS (2007) Distribution characteristics of soil organic carbon and nitrogen in peak-cluster depression landuse of karst region. Chin J Ecol 26:1579–1584

  • Zan FY, Huo SL, Xi BD, Zhang JT, Liao HQ, Wang Y, Yeager KM (2012) A 60-year sedimentary record of natural and anthropogenic impacts on Lake Chenghai, China. J Environ Sci 24(4):602–609. https://doi.org/10.1016/S1001-0742(11)60784-5

    Article  CAS  Google Scholar 

  • Zhang XB, Long Y, Wen AB, He XB (2012) Discussion on applying 137Cs and 210Pbex for lake sediment dating in China. Quat Sci 32:430–440

    Google Scholar 

  • Zhou HC, Ji X (2009) Changes in China’s environment policy since reform and opening up. J Nanjing Univ 46:31–40

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Dr. Zhijun Wang and Dr. Jianjun Yin for their valuable comments and language modifications, which greatly improved the original manuscript.

Funding

This work was supported by the Special Fund for Basic Scientific Research of Chinese Academy of Geological Sciences (NO. YYWF201636), the National Natural Science Foundation of China (NO. 41572234 and NO. 41702271), the Guangxi Natural Science Foundation (2016GXNSFCA380002, 2017GXNSFFA198006), the Geological Survey Project of CGS (DD20160305-03), and the Special Fund for Basic Scientific Research of Institute of Karst Geology (NO.201501, NO.2017006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junbing Pu or Jianhua Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Pu, J., Cao, J. et al. Origin and effect factors of sedimentary organic carbon in a karst groundwater-fed reservoir, South China. Environ Sci Pollut Res 25, 8497–8511 (2018). https://doi.org/10.1007/s11356-017-1001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-1001-3

Keywords

Navigation