Skip to main content
Log in

Growth, extracellular alkaline phosphatase activity, and kinetic characteristic responses of the bloom-forming toxic cyanobacterium, Microcystis aeruginosa, to atmospheric particulate matter (PM2.5, PM2.5–10, and PM>10)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Atmospheric particulate matter (APM), commonly seen and widely excited in environment, appears great enough to influence the biochemical processes in aquatic microorganisms and phytoplankton. Understanding the response of cyanobacteria to various factors is fundamental for eutrophication control. To clarify the response of cyanobacteria to APM, the effects of PM2.5, PM2.5–10, and PM>10 on Microcystis aeruginosa were researched. Variabilities in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular activity, and kinetic parameters of alkaline phosphatase were evaluated by lab-cultured experiments. Results showed that the PM2.5 had a slight stimulation impact on the growth and enhanced both of the 48- and 72-h extracellular alkaline phosphatase activity (APA), the affinity of alkaline phosphatase for substrate, and the 72-h maximum enzymatic reaction velocity (Vmax). Moreover, the stimulations in extracellular APA and Vmax enhanced with the increasing exposure concentrations. We also found there were no obvious distinctions on the effects of growth and alkaline phosphatase in M. aeruginosa between PM2.5–10 and PM>10 exposure groups. Obviously, inhibitory effects on growth existed in 4.0 and 8.0 mg/L PM2.5–10 and 8.0 mg/L PM>10 at 120 h. Furthermore, PM2.5–10 and PM>10 exerted inhibitory effects on the extracellular APA during the 72-h exposure. Simultaneously, the Vmax was notably inhibited and the affinity of alkaline phosphatase for substrate was more inseparable compared with control in PM2.5–10 and PM>10 treatments. Nevertheless, the inhibitors in extracellular APA and kinetic parameters were unrelated to PM2.5–10 and PM>10 exposure concentrations. Two-way ANOVA results revealed that there were significant interactions between exposure concentration and diameter of APM on the 120-h cell density, soluble protein content, APA, and 72 h APA of M. aeruginosa. These results in our study would be meaningful to further researches on relationships between APM deposition and cyanobacterial bloom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

We thank the anonymous reviewers for their constructive and positive comments.

Funding

This study is financially supported by the National Science and Technology Major Program for Water Pollution Control and Treatment (No. 2012ZX07102-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoubing Wang.

Additional information

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Wang, S., Wang, Y. et al. Growth, extracellular alkaline phosphatase activity, and kinetic characteristic responses of the bloom-forming toxic cyanobacterium, Microcystis aeruginosa, to atmospheric particulate matter (PM2.5, PM2.5–10, and PM>10). Environ Sci Pollut Res 25, 7358–7368 (2018). https://doi.org/10.1007/s11356-017-0955-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0955-5

Keywords

Navigation