Skip to main content
Log in

Testicular toxicity and sperm quality following copper exposure in Wistar albino rats: ameliorative potentials of L-carnitine

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Copper is a persistent toxic and bio-accumulative heavy metal of global concern. Continuous exposure of copper compounds of different origin is the most common form of copper poisoning and in turn adversely altering testis morphology and function and affecting sperm quality. L-carnitine has a vital role in the spermatogenesis, physiology of sperm, sperm production and quality. This study was designed to examine whether the detrimental effects of long-term copper consumption on sperm quality and testis function of Wistar albino rat could be prevented by L-carnitine therapy. The parameters included were sperm quality (concentration, viability, motility, and morphology), histopathology, serum aspartate aminotransferase (AST), serum alanine aminotransferase (ALT), serum urea, serum creatinine, serum testosterone and testis antioxidant enzyme levels (superoxide dismutase and glutathione-S-transferase), and biomarkers of oxidative stress (lipid peroxidation and expression of heat shock protein 70 in testis). Three-month-old male Wistar rats (n = 30) were divided into six groups as group 1 (G1, 0.9% saline control), group 2 (G2, CuSO4 200 mg/kg dissolved in 0.9% saline water), groups 3 and 4 (G3 and G4, L-carnitine 50 and 100 mg/kg dissolved in 0.9% saline water, respectively), and groups 5 and 6 (G5 and G6, CuSO4 200 mg/kg plus L-carnitine, 50 and 100 mg/kg dissolved in 0.9% saline water, respectively). Doses of copper (200 mg/kg) and L-carnitine (50 and 100 mg/kg) alone and in combinations along with untreated control were administered orally for 30 days. The following morphological, physiological, and biochemical alterations were observed due to chronic exposure of copper (200 mg/kg) to rats in comparison with the untreated control: (1) generation of oxidative stress through rise in testis lipid peroxidation (12.21 vs 3.5 nmol MDA equivalents/mg protein) and upregulation of heat shock protein (overexpression of HSP70 in testis), (2) liver and kidney dysfunction [elevation in serum ALT (81.65 vs 48.08 IU/L), AST (156.82 vs 88.25 IU/L), ALP (230.54 vs 148.16 IU/L), urea (12.65 vs 7.45 mmol/L), and creatinine (80.61 vs 48.25 μmol/L) levels], (3) significant decrease in body (99.64 vs 106.09 g) and organ weights (liver—3.48 vs 4.99 g; kidney—429.29 vs 474.78 mg; testes—0.58 vs 0.96 g), (4) imbalance in hormonal and antioxidant enzyme concentrations [significant decline in serum testosterone (0.778 vs 3.226 ng/mL), superoxide dismutase (3.07 vs 8.55 μmol/mg protein), and glutathione-S-transferase (59.28 vs 115.58 nmol/mg protein) levels], (5) severe alterations in the testis histomorphology [sloughed cells (90.65%, score 4 vs 15.65%, score 1), vacuolization (85.95%, score 4 vs 11.45%, score 1), cellular debris along with degenerative characteristics, accentuated germ cell depletion in the seminiferous epithelium, severe damage of spermatogonia and Sertoli cells (73.56%, score 3 vs 0%, score 1)], (6) suppression of spermatogenic process [hypospermatogenesis (low Jhonsen testicular biopsy score 4 vs 9.5), decrease in tubules size (283.75 vs 321.25 μm in diameter), and no. of germ cells (81.8 vs 148.7/100 tubules), Leydig cells (5.2 vs 36.65/100 tubules), and Sertoli cells (8.1 vs 13.5/100 tubules)], (7) sperm transit time was shorter in caput and cauda and ensued in incomplete spermatogenic process and formation of immature sperm leading to infertility, (8) sperm quality was affected significantly [decreased daily sperm production (13.21 vs 26.9 × 106 sperms/mL), sperm count (96.12 vs 154.25 × 106/g), sperm viability (26.88 vs 91.65%), and sperm motility (38.48 vs 64.36%)], and (9) increase of head (32.82 vs 2.01%) and tail (14.85 vs 0.14%) morphologic abnormalities and DNA fragmentation index (88.37 vs 11.11%). Oxidative stress and their related events appear to be a potential mechanism involved in copper testicular toxicity and L-carnitine supplementation significantly modulated the possible adverse effects of copper on seminiferous tubules damage, testes function, spermatogenesis, and sperm quality. It was validated that the use of L-carnitine at doses of 50 and 100 mg/kg protects against copper-induced testicular tissue damage and acts as a therapeutic agent for copper heavy metal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdul-Rasheed OF (2010) Association between seminal plasma copper and magnesium levels with oxidative stress in Iraqi infertile men. Oman Med J 25:168–172

    Article  Google Scholar 

  • Agarwal A, Makker K, Sharma R (2008) Clinical relevance of oxidative stress in male factor infertility. An update. Am J Reprod Immunol 59:2–11

    Article  CAS  Google Scholar 

  • Akkoyunlu G, Erdogru T, Seval Y, Ustunel I, Koksal T, Usta MF (2007) Immunolocalization of glial cell-derived neurotrophic factor (GDNF) and its receptor GFR-alpha1 in varicocele induced rat testis. Acta Histochem 109:130–137

    Article  CAS  Google Scholar 

  • Almansour MI (2006) Biochemical effects of copper sulfate, after chronic treatment in quail. J Biol Sci 6:1077–1082

    Article  CAS  Google Scholar 

  • Alshabanah OA, Hafez MM, Al-Harbi MM, Hassan ZK, Al Rejaie SS, Asiri YA, Sayed-Ahmed MM (2010) Doxorubicin toxicity can be ameliorated during antioxidant L-carnitine supplementation. Oxidative Med Cell Longev 3:428–433

    Article  Google Scholar 

  • Asada K, Takahashi M, Nagate M (1974) Assay and inhibitors of spinach superoxide dismutase. Agric Biol Chem 38:471–473

    Article  CAS  Google Scholar 

  • Babaei H, Abshenas J (2013) Zinc therapy improves adverse effects of long term administration of copper on epididymal sperm quality of rats. Iran J Reprod Med 11:577–582

    CAS  Google Scholar 

  • Babaei H, Roshangar L, Sakhaee E, Abshenas J, Kheirandish R, Dehghani R (2012) Ultrastructuraland morphometrical changes of mice ovaries following experimentally induced copper poisoning. Iran Red Crescent Med J 14:558

    CAS  Google Scholar 

  • Bancroft JD, Gamble MN (2002) Theory and practice of histological techniques, 5th edn. Churchill-Livingstone, Edinburgh, p 175

    Google Scholar 

  • Beardsley A, O’Donnell L (2003) Characterization of normal spermiation and spermiation failure induced by hormone suppression in adult rats. Biol Reprod 68:1299–1307

    Article  CAS  Google Scholar 

  • Bellentani FF, Fernandes GSA, Perobelli JE, Pacini ESA, Kiguti LRA, Pupo AS, Kempinas WDG (2011) Acceleration of sperm transit time and reduction of sperm reserves in the epididymis of rats exposed to sibutramine. J Androl 32:718–724

    Article  CAS  Google Scholar 

  • Bertelli A, Conte A, Ronca G (1994) L-propionyl carnitine protects erythrocytes and low density lipoproteins against peroxidation. Drugs Exp Clin Res 20:191–197

    CAS  Google Scholar 

  • Biggiogera M, Tanguay RM, Marin R, Wu Y, Martin TE, Fakan S (1996) Localization of heat shock proteins in mouse male germ cells: an immune electron microscopical study. Exptl Cell Res 229:77–85

    Article  CAS  Google Scholar 

  • Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritis I (2016) Dietary copper and human health, current evidence and unresolved issues. J Trace Elem Med Biol 35:107–115

    Article  CAS  Google Scholar 

  • Cabral REL, Okada FK, Stumpp T, Vendramini V, Miraglia SM (2014) Carnitine partially protects the rat testis against the late damage produced by doxorubicin administered during pre-puberty. Andrology 2:931–942

    Article  CAS  Google Scholar 

  • Cheesbrough M (2009) District laboratory practice in tropical countries (2nd ed., Vol. Part 1), pp. 1–454). Cambridge University Press, Cambridge

  • Clark JD, Baldwin RL, Bayne KA, Brown M, Gebhart GF, Gonder JC, Gwathmey JK, Keeling ME, Kohn DF, Robb JW, Smith OA (1996) Guide for the care and use of laboratory animals. Institute of Laboratory Animal Resources, National Research Council, Washington, DC, p 125

    Google Scholar 

  • El-Masry AA (2012) Toxicity and hepatorenal response to acute copper exposure in rats. Glob Adv Res J Biochem Bioinform 1(1):1–6

    Google Scholar 

  • Ferrari R, Ciampalini G, Agnoletti G, Cargnoni A, Ceconi C, Visioli O (1988) Effect of L-carnitine derivatives on heart mitochondrial damage induced by lipid peroxidation. Pharmacol Res Commun 20:125–132

    Article  CAS  Google Scholar 

  • Filler R (1993) Methods for evaluation of rat epididymal sperm morphology. In: Chapin RE, Heindel JJ (eds) Methods in toxicology. Part A: male reproductive toxicology. Academic Press, San Diego, pp 335–343

    Google Scholar 

  • Forlenza MJ, Miller GE (2006) Increased serum levels of 8-hydroxy-2-deoxyguanosine in clinical depression. Psychosom Med 68:1–7

    Article  CAS  Google Scholar 

  • Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  CAS  Google Scholar 

  • Garcia CL, Filippi S, Mosesso P, Calvani M, Nicolai R, Mosconi L, Palitti F (2005) The protective effect of L-carnitine in peripheral blood human lymphocytes exposed to oxidative agents. Mutagenesis 21:21–27

    Article  Google Scholar 

  • Guclu BK, Kara K, Cakir L, Cetin E, Kanbur M (2011) Carnitine supplementation modulates high dietary copper-induced oxidative toxicity and reduced performance in laying hens. Biol Trace Elem Res 144:725–735

    Article  Google Scholar 

  • Hammami I, Amara S, Benahmed M, Ej May M, Mauduit C (2009) Chronic crude garlic-feeding modified adult male rat testicular markers: mechanisms of action. Reprod Biol Endocrinol 7:65

    Article  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: Palaeontological statistics software package for education and data analysis (version 1.86b). Palaeontol Electron 4:1–9

    Google Scholar 

  • Harrison MD, Jones CE, Solioz M, Dameron CT (2000) Intracellular copper routing: the role of copper. Chaperones. Trend Biochem Sci 25:29–32

    Article  CAS  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immune peroxidase techniques. A comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    Article  CAS  Google Scholar 

  • Izgut-Uysal VN, Agac A, Derin N (2003) Effect of L-carnitine on carrageenan-induced inflammation in aged rats. Gerontology 49:287–292

    Article  Google Scholar 

  • Johnsen SG (1970) Testicular biopsy score count—a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones 1:2–25

    CAS  Google Scholar 

  • Kelly GS (1998) L-Carnitine: therapeutic applications of a conditionally-essential amino acid. Altern Med Rev 3:345–360

    CAS  Google Scholar 

  • Koeva Y, Delchev S, Georgieva K, Atanassova P (2005) Heat shock protein- 70 expression in testis following endurance training of rats. In: Gruev B, Nikolova M, Donev A (eds) Proceedings of the Balkan scientific conference of biology, Plovdiv, Bulgaria, pp 288–294

  • Korkmaz A, Ahbab MA, Kolankaya D, Barlas N (2010) Influence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats. Food Chem Toxicol 48:2865–2871

    Article  CAS  Google Scholar 

  • Kumar V, Kalita J, Misra UK, Bora HK (2015) A study of dose response and organ susceptibility of copper toxicity in a rat model. J Trace Elem Med Biol 29:269–274

    Article  CAS  Google Scholar 

  • Lenzi A, Lombardo F, Sgro P, Salacone P, Caponecchia L, Dondero F, Gandini L (2003) Use of carnitine therapy in selected cases of male factor infertility: a double-blind crossover trial. Fertil Steril 79:292–300

    Article  Google Scholar 

  • Lenzi A, Sgro P, Salacone P, Paoli D, Gilio B, Lombardo F, Santulli M, Agarwal A, Gandini L (2004) A placebo-controlled double blind randomized trial of the use of combined L-carnitine and L-acetyl-carnitine treatment in men with asthenozoospermia. Fertil Steril 81:1578–1584

    Article  CAS  Google Scholar 

  • Longo N, Filippo CAS, Pasquali M (2006) Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet 142C(2):77–85

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Matalliotakis I, Koumantaki Y, Evageliou A, Matalliotakis G, Goumenou A, Koumantakis E (2000) L-carnitine levels in the seminal plasma of fertile and infertile men: correlation with sperm quality. Intl J Fertil Womens Med 45:236–240

    CAS  Google Scholar 

  • Meistrich ML, van Beek MEAB (1993) Spermatogonial stem cells: assessing their survival and ability to produce differentiated cells. In: Chapin RE, Heindel J (eds) Methods in toxicology, vol 3A. Academic Press, New York, pp 106–123

    Google Scholar 

  • Nemzek J, Boloqos G, Williams B, Remick D (2001) Differences in normal values for murine white blood cells counts and other hematological parameters based on sampling site. Inflamm Res 50:523–527

    Article  CAS  Google Scholar 

  • Ng CM, Blackman MR, Wang C, Swerdloff RS (2004) The role of carnitine in the male reproductive system. Ann N Y Acad Sci 1033:177–188

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohisi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  Google Scholar 

  • Oliva SU, Miraglia SM (2009) Carbamazepine damage to rat spermatogenesis in different sexual developmental phases. Intl J Androl 32:563–574

    Article  Google Scholar 

  • Palmero S, Bottazzi C, Costa M, Leone M, Fugassa E (2000) Metabolic effects of L-carnitine on pre pubertal rat Sertoli cells. Horm Metab Res 32:87–90

    Article  CAS  Google Scholar 

  • Pekala J, Patkowska-Sokola B, Bodkowski R, Jamroz D, Nowakowski P, Lochynski S, Librowski T (2011) L-Carnitine—metabolic functions and meaning in humans life. Curr Drug Metab 12:667–678

    Article  CAS  Google Scholar 

  • Ramadan LA, Abd-Allah AR, Aly HA, Saad-el-Din AA (2002) Testicular toxicity effects of magnetic field exposure and prophylactic role of coenzyme Q10 and L-carnitine in mice. Pharmacol Res 46:363–370

    Article  CAS  Google Scholar 

  • Rezazadeh-Reyhania Z, Razia M, Malekinejad H, Sadrkhanlou R (2015) Cytotoxic effect of nanosilver particles on testicular tissue: evidence for biochemical stress and Hsp70-2 protein expression. Environ Toxicol Pharmacol 40:626–638

    Article  Google Scholar 

  • Robb GW, Amann PR, Killian GJ (1978) Daily sperm production and epididymal sperm reserves of pubertal and adult rats. J Reprod Fertil 54:103–107

    Article  CAS  Google Scholar 

  • Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ (2001) Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol Reprod 65(1):229–239

    Article  CAS  Google Scholar 

  • Roy VK, Peki V, Devi MS, Sanjeev S, Khusboo M, Zothansanga R, Ibrahim KS, Senthilkumar N, Gurusubramanian G (2017) Biosterilant effects of Bacillus thuringiensis kurstaki HD-73 extract on male Wistar albino rats. Theriogenology 88:73–83

    Article  Google Scholar 

  • Roychoudhury S, Slivkova J, Bulla J, Massanyi P (2008) Copper administration alters fine parameters of sperm motility in vitro. Folia Vet 52:64–68

    CAS  Google Scholar 

  • Roychoudhury S, Massanyi P, Bulla J, Choudhury MD, Straka L, Lukac N, Formicki G, Dankova M, Bardos L (2016) In vitro copper toxicity on rabbit sperm motility, morphology and cell membrane integrity. J Environ Sci Health A 45:1482–1491

    Article  Google Scholar 

  • Ruiz-Pesini E, Alvarez E, Enriquez JA, Lopez-Perez MJ (2001) Association between seminal plasma carnitine and sperm mitochondrial enzymatic activities. Int J Androl 24:335–340

    Article  CAS  Google Scholar 

  • Saito K, O’Donnell L, McLachlan RI, Robertson DM (2000) Spermiation failure is a major contributor to early spermatogenic suppression caused by hormone withdrawal in adult rats. Endocrinology 141:2779–2785

    Article  CAS  Google Scholar 

  • Sakhaee E, Emadi L, Abshenas J, Kheirandish R, Azari O, Amiri E (2012) Evaluation of epididymal sperm quality following experimentally induced copper poisoning in male rats. Andrologia 44:110–116

    Article  Google Scholar 

  • Saravu K, Jose J, Bhat MN, Jimmy B, Shastry B (2007) Acute ingestion of copper sulphate: a review on its clinical manifestations and management. Indian J Crit Care Med 11:74–80

    Article  Google Scholar 

  • Sayed-Ahmed MM (2010) Role of carnitine in cancer chemotherapy-induced multiple organ toxicity. Saudi Pharma J 18:195–206

    Article  CAS  Google Scholar 

  • Seo J, Kim K, Moon M, Kim W (2010) The significance of micro surgical varicocelectomy in the treatment of subclinical varicocele. Fertil Steril 93(6):1907–1910

    Article  Google Scholar 

  • Sergerie M, Laforest G, Bujan L, Bissonnette F, Bleau G (2005) Sperm DNA fragmentation: threshold value in male fertility. Hum Reprod 20(12):3446–3451

    Article  CAS  Google Scholar 

  • Slivkova J, Popelkova M, Massanyi P, Toporcerova S, Stawarz R, Formicki G, Lukac N, Putala A, Guzik M (2009) Concentration of trace elements in human semen and relation to sperm quality. J Environ Sci Health A 44:370–375

    Article  CAS  Google Scholar 

  • Sokol RJ, Devereaux M, Mierau GW, Hambidge KM, Shikes RH (1990) Oxidant injury to hepatic mitochondrial lipids in rats with dietary copper over load. Modification by vitamin E deficiency. Gastroenterology 99:1061–1071

    Article  CAS  Google Scholar 

  • Stradaioli G, Sylla L, Zelli R, Chiodi P, Monaci M (2004) Effect of L-carnitine administration on the seminal characteristics of oligo asthenospermic stallions. Theriogenology 62:761–777

    Article  CAS  Google Scholar 

  • Talebi AR, Sarcheshmeh AA, Khalili MA, Tabibnejad N (2011) Effect of ethanol consumption on chromatin condensation and DNA integrity of epididymal sperm in rat. Alcohol 45:403–409

    Article  CAS  Google Scholar 

  • Talebi AR, Vahidi S, Aflatoonian A, Ghasemi N, Ghasemzadeh J, Dehghani Firoozabadi R, Moein MR (2012) Cytochemical evaluation of sperm chromatin and DNA integrity in couples with unexplained recurrent spontaneous abortions. J Androl 44(Suppl):462–470

    Article  Google Scholar 

  • Tarladacalisir YT, Kanter M, Uzal MC (2009) Role of L-carnitine in the prevention of seminiferous tubules damage induced by gamma radiation: a light and electron microscopic study. Arch Toxicol 83:735–746

    Article  Google Scholar 

  • Tejeda RI, Mitchel JC, Norman A, Marik JJ, Friedman S (1984) A test for the practical evaluation of male fertility by acridine orange (AO) fluorescence. Fertil Steril 42:87–91

    Article  Google Scholar 

  • Tesarik J, Martinez F, Rienzi L, Iacobelli M, Ubaldi F, Mendoza C (2002) In-vitro effects of FSH and testosterone withdrawal on caspase activation and DNA fragmentation in different cell types of human seminiferous epithelium. Hum Reprod 17:1811–1819

    Article  CAS  Google Scholar 

  • Trivedi PP, Kushwaha S, Tripathi DN, Jena GB (2010) Evaluation of male germ cell toxicity in rats: correlation between sperm head morphology and sperm comet assay. Mutat Res 703(2):115–121

    Article  CAS  Google Scholar 

  • Tvrda E, Knazicka Z, Bardos L, Massanyi P, Lukac N (2011) Impact of oxidative stress on male fertility—a review. Acta Vet Hung 59:465–484

    Article  CAS  Google Scholar 

  • Tvrda E, Peer R, Sikka SC, Agarwal A (2015) Iron and copper in male reproduction: a double-edged sword. J Assist Reprod Genet 32(1):3–16

    Article  Google Scholar 

  • Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Asp Med 26(4–5):268–298

    Article  CAS  Google Scholar 

  • Warholm M, Gutenberg C, Von Bahr C, Mannervik B (1985) Glutathione transferases from human liver. Methods Enzymol 113:499–504

    Article  CAS  Google Scholar 

  • World Health Organization (1999) WHO laboratory manual for the examination of human semen and semen-cervical mucus interaction. Cambridge University Press, Cambridge

    Google Scholar 

  • Wu Y, Pei Y, Qin Y (2011) Developmental expression of heat shock proteins 60, 70, 90, and A2 in rabbit testis. Cell Tissue Res 344:355–363

    Article  CAS  Google Scholar 

  • Zemanova J, Lukac N, Massanyi P, Trandzik J, Burocziova M, Nad P, Capcarova M, Stawarz R, Skalicka M, Toman R, Korenekova B, Jakabova D (2007) Nickel seminal concentrations in various animals and correlation to sperm quality. J Vet Med A54:281–286

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the instrumentation facility in Mizoram University funded by Department of Biotechnology, Government of India, New Delhi—Bioinformatics Infrastructure Facility (No. BT/BI/12/060/2012(NERBIF-MUA) and State Biotech Hub Programme (No. BT/04/NE/2009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vikas Kumar Roy or Guruswami Gurusubramanian.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Fig. A.1

Effects of L-carnitine (50 and 100 mg/kg) on copper-induced (200 mg/kg) sperm abnormality in rats. Nigrosin-eosin staining, ×40 eyepiece magnification, scale bar = 20 μm. Representative sperm smears from each treatment groups were taken to study the abnormalities of sperm morphology. A Phenotype of a normal sperm sickle-shaped head and a long tail. B Banana-shaped sperm head with tail less sperm. C Coiled tail. D Sperm with globose and amorphous head. E Two headed sperm and a cephalo-caudally bent sperm. F Broken and coiled tail. G Sperm head lacks of usual hook. H Banana-shaped, hook-less and two headed sperm. I Detached head and separated flagellum (GIF 84 kb)

High Resolution Image (TIFF 1406 kb)

Fig. A.2

Correlation and regression analysis between serum testosterone concentrations (ng/mL) and A Jhonsen’s mean testicular biopsy score, JTBS to assess the testis damage, B mean seminiferous tubule diameter (MSTD, μm), C sperm number in cauda (×106 sperms/mL) and D daily sperm production in testis (×106 sperms/testis/day) (GIF 48 kb)

High Resolution Image (TIFF 506 kb)

Fig. A.3

Correlation and regression analysis between assessment of generation of lipid peroxidation radicals (nmol MDA equivalents/mg protein) and A serum testosterone concentrations (ng/mL), B epididymal sperm motility (%), C daily sperm production in testis (×106 sperms/testis/day), D sperm number in cauda (×106 sperms/mL), E total number of sperm head abnormalities (%), and F total number of sperm tail abnormalities (%) (GIF 67 kb)

High Resolution Image (TIFF 682 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khushboo, M., Murthy, M.K., Devi, M.S. et al. Testicular toxicity and sperm quality following copper exposure in Wistar albino rats: ameliorative potentials of L-carnitine. Environ Sci Pollut Res 25, 1837–1862 (2018). https://doi.org/10.1007/s11356-017-0624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0624-8

Keywords

Navigation