Skip to main content
Log in

Combined effects of binary antibiotic mixture on growth, microcystin production, and extracellular release of Microcystis aeruginosa: application of response surface methodology

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The interactive effects of binary antibiotic mixtures of spiramycin (SP) and ampicillin (AMP) on Microcystis aeruginosa (MA) in terms of growth as well as microcystin production and extracellular release were investigated through the response surface methodology (RSM). SP with higher 50 and 5% effective concentrations in MA growth was more toxic to MA than AMP. RSM model for toxic unit approach suggested that the combined toxicity of SP and AMP varied from synergism to antagonism with SP/AMP mixture ratio decreasing from reversed equitoxic ratio (5:1) to equitoxic ratio (1:5). Deviations from the prediction of concentration addition (CA) and independent action (IA) model further indicated that combined toxicity of target antibiotics mixed in equivalent ratio (1:1) varied from synergism to antagonism with increasing total dose of SP and AMP. With the increase of SP/AMP mixture ratio, combined effect of mixed antibiotics on MA growth changed from stimulation to inhibition due to the variation of the combined toxicity and the increasing proportion of higher toxic component (SP) in the mixture. The mixture of target antibiotics at their environmentally relevant concentrations with increased total dose and SP/AMP mixture ratio stimulated intracellular microcystin synthesis and facilitated MA cell lysis, thus leading to the increase of microcystin productivity and extracellular release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agunbiade FO, Moodley B (2014) Pharmaceuticals as emerging organic contaminants in Umgeni River water system, KwaZulu-Natal, South Africa. Environ Monit Assess 186:7273–7291

    Article  CAS  Google Scholar 

  • Ando T, Nagase H, Eguchi K, Hirooka T, Nakamura T, Miyamoto K, Hirata K (2007) A novel method using cyanobacteria for ecotoxicity test of veterinary antimicrobial agents. Environ Toxicol Chem 26:601–606

    Article  CAS  Google Scholar 

  • Antonopoulou M, Chondrodimou I, Bairamis F, Giannakas A, Konstantinou I (2016) Photocatalytic reduction of Cr (VI) by char/TiO2 composite photocatalyst: optimization and modeling using the response surface methodology (RSM). Environ Sci Pollut Res 24:1063–1072

    Article  CAS  Google Scholar 

  • Babica P, Bláha L, Maršálek B (2006) Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. J Phycol 42:9–20

    Article  Google Scholar 

  • Brisson-Noël A, Trieu-Cuot P, Courvalin P (1988) Mechanism of action of spiramycin and other macrolides. J Antimicrob Chemother 22:13–23

    Article  Google Scholar 

  • Broderius SJ, Kahl MD, Elonen GE, Hammermeister DE, Hoglund MD (2005) A comparison of the lethal and sublethal toxicity of organic chemical mixtures to the fathead minnow (Pimephales promelas). Environ Toxicol Chem 24:3117–3127

    Article  CAS  Google Scholar 

  • Campos A, Vasconcelos V (2010) Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 11:268–287

    Article  CAS  Google Scholar 

  • Chen J, Guo R (2012) Access the toxic effect of the antibiotic cefradine and its UV light degradation products on two freshwater algae. J Hazard Mater 209:520–523

    Article  CAS  Google Scholar 

  • Christensen AM, Ingerslev F, Baun A (2006) Ecotoxicity of mixtures of antibiotics used in aquacultures. Environ Toxicol Chem 25:2208–2215

    Article  CAS  Google Scholar 

  • Daly RI, Ho L, Brookes JD (2007) Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environ Sci Technol 41:4447–4453

    Article  CAS  Google Scholar 

  • Ding G, Zhang J, Chen Y, Wang L, Wang M, Xiong D, Sun Y (2013) Combined effects of PFOS and PFOA on zebrafish (Danio rerio) embryos. Arch Environ Contam Toxicol 64:668–675

    Article  CAS  Google Scholar 

  • Dittmann E, Fewer DP, Neilan BA (2013) Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 37:23–43

    Article  CAS  Google Scholar 

  • Fischer A, Höger SJ, Stemmer K, Feurstein D, Knobeloch D, Nussler A, Dietrich DR (2010) The role of organic anion transporting polypeptides (OATPs/SLCOs) in the toxicity of different microcystin congeners in vitro: a comparison of primary human hepatocytes and OATP-transfected HEK293 cells. Toxicol Appl Pharmacol 245:9–20

    Article  CAS  Google Scholar 

  • Gattullo CE, Bährs H, Steinberg CE, Loffredo E (2012) Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506

    Article  CAS  Google Scholar 

  • González-Pleiter M et al (2013) Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Water Res 47:2050–2064

    Article  CAS  Google Scholar 

  • Guo R, Xie W, Chen J (2015) Assessing the combined effects from two kinds of cephalosporins on green alga (Chlorella pyrenoidosa) based on response surface methodology. Food Chem Toxicol 78:116–121

    Article  CAS  Google Scholar 

  • Hagenbuch IM, Pinckney JL (2012) Toxic effect of the combined antibiotics ciprofloxacin, lincomycin, and tylosin on two species of marine diatoms. Water Res 46:5028–5036

    Article  CAS  Google Scholar 

  • Halling-Sørensen B (2000) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40:731–739

    Article  Google Scholar 

  • Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342

    Article  CAS  Google Scholar 

  • Horii T et al (2002) Antibacterial activities of β-lactamase inhibitors associated with morphological changes of cell wall in helicobacter pylori. Helicobacter 7:39–45

    Article  CAS  Google Scholar 

  • Hu X et al (2014) Effects of d-menthol stress on the growth of and microcystin release by the freshwater cyanobacterium Microcystis aeruginosa FACHB-905. Chemosphere 113:30–35

    Article  CAS  Google Scholar 

  • Huang W et al (2012) Responses in growth and succession of the phytoplankton community to different N/P ratios near Dongtou Island in the East China Sea. J Exp Mar Biol Ecol 434:102–109

    Article  CAS  Google Scholar 

  • Jia J, Zhu F, Ma X, Cao ZW, Li YX, Chen YZ (2009) Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 8:111–128

    Article  CAS  Google Scholar 

  • Jiang Y, Ji B, Wong R, Wong M (2008) Statistical study on the effects of environmental factors on the growth and microcystins production of bloom-forming cyanobacterium—Microcystis aeruginosa. Harmful Algae 7:127–136

    Article  CAS  Google Scholar 

  • Johansen HK, Jensen TG, Dessau RB, Lundgren B, Frimodt-Møller N (2000) Antagonism between penicillin and erythromycin against Streptococcus pneumoniae in vitro and in vivo. J Antimicrob Chemother 46:973–980

    Article  CAS  Google Scholar 

  • Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology 8:423–435

    Article  CAS  Google Scholar 

  • Lützhøft HCH, Halling-Sørensen B, Jørgensen S (1999) Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contam Toxicol 36:1–6

    Article  Google Scholar 

  • Liu JL, Wong MH (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224

    Article  CAS  Google Scholar 

  • Liu Y, Gao B, Yue Q, Guan Y, Wang Y, Huang L (2012) Influences of two antibiotic contaminants on the production, release and toxicity of microcystins. Ecotoxicol Environ Saf 77:79–87

    Article  CAS  Google Scholar 

  • Liu Y, Zhang J, Gao B, Feng S (2014) Combined effects of two antibiotic contaminants on Microcystis aeruginosa. J Hazard Mater 279:148–155

    Article  CAS  Google Scholar 

  • Loureiro S, Amorim MJ, Campos B, Rodrigues SM, Soares AM (2009) Assessing joint toxicity of chemicals in Enchytraeus Albidus (Enchytraeidae) and Porcellionides pruinosus (Isopoda) using avoidance behaviour as an endpoint. Environ Pollut 157:625–636

    Article  CAS  Google Scholar 

  • Ma M, Liu R, Liu H, Qu J (2012) Chlorination of Microcystis aeruginosa suspension: cell lysis, toxin release and degradation. J Hazard Mater 217:279–285

    Article  CAS  Google Scholar 

  • Mazzei T, Mini E, Novelli A, Periti P (1993) Chemistry and mode of action of macrolides. J Antimicrob Chemother 31:1–9

    Article  CAS  Google Scholar 

  • Pavagadhi S, Tang ALL, Sathishkumar M, Loh KP, Balasubramanian R (2013) Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments. Water Res 47:4621–4629

    Article  CAS  Google Scholar 

  • Pei HY, Ma CX, WR H, Sun F (2014) The behaviors of Microcystis aeruginosa cells and extracellular microcystins during chitosan flocculation and flocs storage processes. Bioresour Technol 151:314–322

    Article  CAS  Google Scholar 

  • Polyak Y, Zaytseva T, Medvedeva N (2013) Response of toxic cyanobacterium Microcystis aeruginosa to environmental pollution. Water Air Soil Pollut 224:1–14

    Article  CAS  Google Scholar 

  • Qian H, Li J, Sun L, Chen W, Sheng GD, Liu W, Fu Z (2009) Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat Toxicol 94:56–61

    Article  CAS  Google Scholar 

  • Qian H, Pan X, Chen J, Zhou D, Chen Z, Zhang L, Fu Z (2012) Analyses of gene expression and physiological changes in Microcystis aeruginosa reveal the phytotoxicities of three environmental pollutants. Ecotoxicology 21:847–859

    Article  CAS  Google Scholar 

  • Qu JH (2004) Sensitivity of five kinds of algae to commonly used antibiotics. J Dalian Inst Light Ind 23:111–113

    CAS  Google Scholar 

  • Rodea-Palomares I, Petre AL, Boltes K, Leganés F, Perdigón-Melón JA, Rosal R, Fernández-Piñas F (2010) Application of the combination index (CI)-isobologram equation to study the toxicological interactions of lipid regulators in two aquatic bioluminescent organisms. Water Res 44:427–438

    Article  CAS  Google Scholar 

  • Santos LH, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro M (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95

    Article  CAS  Google Scholar 

  • Sartory D, Grobbelaar J (1984) Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114:177–187

    Article  CAS  Google Scholar 

  • Stanier R, Bazine G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274

    Article  CAS  Google Scholar 

  • Stoichev T, Baptista MS, Basto MCP, Vasconcelos VM, Vasconcelos MTS (2011) Effects of minocycline and its degradation products on the growth of Microcystis aeruginosa. Ecotoxicol Environ Saf 74:219–224

    Article  CAS  Google Scholar 

  • Thirumavalavan M, Hu YL, Lee JF (2012) Effects of humic acid and suspended soils on adsorption and photo-degradation of microcystin-LR onto samples from Taiwan reservoirs and rivers. J Hazard Mater 217:323–329

    Article  CAS  Google Scholar 

  • Wang Z, Wang C, Wang P, Qian J, Hou J, Ao Y, Wu B (2015) The performance of chitosan/montmorillonite nanocomposite during the flocculation and floc storage processes of Microcystis aeruginosa cells. Environ Sci Pollut Res 22:11148–11161

    Article  CAS  Google Scholar 

  • Wang ZY, Wang C, Wang PF, Qian J, Hou J, Ao YH (2014) Process optimization for microcystin-LR adsorption onto nano-sized montmorillonite K10: application of response surface methodology. Water Air Soil Pollut 225:2124–2125

    Article  CAS  Google Scholar 

  • Xu HY, Liu WC, Shi J, Zhao H, Qi SY (2014) Photocatalytic discoloration of Methyl Orange by anatase/schorl composite: optimization using response surface method. Environ Sci Pollut Res 21:1582–1591

    Article  CAS  Google Scholar 

  • Yang LH, Ying GG, HC S, Stauber JL, Adams MS, Binet MT (2008) Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga pseudokirchneriella subcapitata. Environ Toxicol Chem 27:1201–1208

    Article  CAS  Google Scholar 

  • Zanchett G, Oliveira-Filho EC (2013) Cyanobacteria and cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins 5:1896–1917

    Article  CAS  Google Scholar 

  • Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49:6772–6782

    Article  CAS  Google Scholar 

  • Zhang T, Li X, Lu Y, Liu P, Zhang C, Luo H (2014) Joint toxicity of heavy metals and chlorobenzenes to pyriformis Tetrahymena. Chemosphere 104:177–183

    Article  CAS  Google Scholar 

  • Zhang YQ, Wu QP, Zhang JM, Yang XH (2011) Effects of ozone on membrane permeability and ultrastructure in Pseudomonas aeruginosa. J Appl Microbiol 111:1006–1015

    Article  CAS  Google Scholar 

  • Zhu X, Kong H, Gao Y, Wu M, Kong F (2012) Low concentrations of polycyclic aromatic hydrocarbons promote the growth of Microcystis aeruginosa. J Hazard Mater 237:371–375

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all anonymous editors and reviewers for providing comments on this paper. We also appreciate the generous financial support of this work provided by the National Key Research and Development Program of China (2017YFC0404501), the National Natural Science Foundation of China (51609144), the Natural Science Foundation of Jiangsu Province (BK20160143), and the Water Resource Science & Technology Project of Jiangsu Province (2015005 and 2016030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Wang.

Additional information

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Chen, Q., Hu, L. et al. Combined effects of binary antibiotic mixture on growth, microcystin production, and extracellular release of Microcystis aeruginosa: application of response surface methodology. Environ Sci Pollut Res 25, 736–748 (2018). https://doi.org/10.1007/s11356-017-0475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0475-3

Keywords

Navigation