Skip to main content
Log in

Inhibition of Phytophthora species, agents of cocoa black pod disease, by secondary metabolites of Trichoderma species

  • Chemistry, Activity and Impact of Plant Biocontrol products
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cocoa production is affected by the black pod disease caused by several Phytophthora species that bring, about each year, an estimated loss of 44% of world production. Chemical control remains expensive and poses an enormous risk of poisoning for the users and the environment. Biocontrol by using antagonistic microorganisms has become an alternative to the integrated control strategy against this disease. Trichoderma viride T7, T. harzanium T40, and T. asperellum T54, which showed in vivo and in vitro antagonistic activity against P. palmivora, were cultured and mycelia extracted. Inhibition activity of crude extracts was determined, and then organic compounds were isolated and characterized. The in vitro effect of each compound on the conidia germination and mycelia growth of four P. palmivora, two P. megakaria, and one P. capsici was evaluated. T. viride that displayed best activities produced two active metabolites, viridin and gliovirin, against P. palmivora and P. megakaria strains. However, no activity against P. capsici was observed. Besides being active separately, these two compounds have a synergistic effect for both inhibitions, mycelia growth and conidia germination. These results provide the basis for the development of a low-impact pesticide based on a mixture of viridin and gliovirine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acebo-Guerrero Y, Hernandez-Rodriguez A, Heydrich-Perez M, El Jaziri M, Hernandes-Lauzardo AN (2011) Management of black pod rot in cacao (Theobroma cacao L.): a review. Fruits 67:41–48

    Article  Google Scholar 

  • Acebo-Guerrero Y, Hernandez-Rodriguez A, Vandeputte O, Miguelez-Sierra Y, Heydrich-Perez M, Ye L, Cornelis P, Bertin P, El Jaziri M (2015) Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler). J Appl Microbiol 119:1112–1126

    Article  CAS  Google Scholar 

  • Andersson PF, Johansson SBK, Stenlid J, Broberg A (2010) Isolation, identification and necrotic activity of viridiol from Chalara fraxinea, the fungus responsible for dieback of ash. For Pathol 40:43–46

    Article  Google Scholar 

  • Avent AG, Hanson JR, Truneh A (1992) Metabolites of Gliocladium flavofuscum. Phytochemistry 32:197–198

    Article  CAS  Google Scholar 

  • Bacikova D, Betina V, Nemec P (1965) Antihelminthic activity of antibiotics. Nature 206:1371–1372

    Article  CAS  Google Scholar 

  • Bae SJ, Mohanta TK, Chung JY et al (2016) Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol Control 92:128–138

    Article  CAS  Google Scholar 

  • Brian PW, McGowan JG (1945) Viridin: a highly fungistatic substance produced by Trichoderma viride. Nature 156:144–145

    Article  CAS  Google Scholar 

  • Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosyst Environ 100:3–16

    Article  Google Scholar 

  • Calhoun LA, Findlay JA, David MJ, Whitney NJ (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycol Res 96:281–286

    Article  Google Scholar 

  • Chen Y-Y, Chen P-C, Tsay T-T (2016) The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici. Biol Control 98:34–42

    Article  Google Scholar 

  • Dipietro A, Lorito M, Hayes CK, Broadway RM, Harman GE (1993) Endochitinase from Gliocladium virens—isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83:308–313

    Article  CAS  Google Scholar 

  • El-Hasan A, Walker F, Schone J, Buchenauer H (2009) Detection of viridiofungin A and other antifungal metabolites excreted by Trichoderma harzianum active against different plant pathogens. Eur J Plant Pathol 124:457–470

    Article  CAS  Google Scholar 

  • Grove J.F., Moffatt J.S. & Vischer E.B. (1965) Viridin. Part I. Isolation and characterisation. J Chem Soc 3803–3811. https://doi.org/10.1039/JR9650003803

  • Haesler F, Hagn A, Frommberger M, Hertkorn N, Schmitt-Kopplin P, Munch JC, Schloter M (2008) In vitro antagonism of an actinobacterial Kitasatospora isolate against the plant pathogen Phytophthora citricola as elucidated with ultrahigh resolution mass spectrometry. J Microbiol Methods 75:188–195

    Article  CAS  Google Scholar 

  • Hanada RE, Souza TD, Pomella AWV, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ (2008) Trichoderma martiale sp nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res 112:1335–1343

    Article  CAS  Google Scholar 

  • Hanada RE, Pomella AWV, Soberanis W, Loguercio LL, Pereira JO (2009) Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao. Biol Control 50:143–149

    Article  Google Scholar 

  • Howell CR (1982) Effect of Gliocladium virens on Pythium ultimum, Rhizoctonia solani, and Damping-Off of Cotton Seedlings. Phytopathology 72:496–498

    Article  Google Scholar 

  • Howell CR (1991) Biological-control of pythium damping-off of cotton with seed-coating preparations of Gliocladium virens. Phytopathology 81:738–741

    Article  Google Scholar 

  • Howell CR, Puckhaber LS (2005) Study of the characteristics of “P” and “Q” strains of Trichoderma virens to account for differences in biological control efficacy against cotton seedling diseases. Biol Control 33:217–222

    Article  Google Scholar 

  • Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological-control of Pythium ultimum. Can J Microbiol 29:321–324

    Article  CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1984) Mycoherbicidal activity of Gliocladium virens by means of viridiol production. Phytopathology 74:836–836

    Article  Google Scholar 

  • Howell CR, Stipanovic RD, Lumsden RD (1993) Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Sci Tech 3:435–441

    Article  Google Scholar 

  • ICCO (2014) Quarterly Bulletin of Cocoa Statistics, Vol XL, No 2, Cocoa year 2013/14 accessed online at. http://www.icco.org/statistics/production-and-grindings/production.html

  • Itoh Y, Kodama K, Furuya K, Takahashi S, Haneishi T, Takiguchi Y, Arai M (1980) A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization. J Antibiot 33:468–473

    Article  CAS  Google Scholar 

  • Itoh Y, Takahashi S, Arai M (1982) Structure of gliocladic acid. J Antibiot 35:541–542

    Article  CAS  Google Scholar 

  • Iwasa E, Hamashima Y, Sodeoka M (2011) Epipolythiodiketopiperazine alkaloids: total syntheses and biological activities. Israel Journal of Chemistry 51:420–433

    Article  CAS  Google Scholar 

  • Kamoun S, Furzer O, Jones JDG et al (2015) The Top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16:413–434

    Article  Google Scholar 

  • Lee SH, Cho YE, Park SH, Balaraju K, Park JW, Lee SW, Park K (2013) An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41:49–58

    Article  CAS  Google Scholar 

  • Leng PF, Zhang ZM, Pan GT, Zhao MJ (2011) Applications and development trends in biopesticides. Afr J Biotechnol 10:19864–19873

    CAS  Google Scholar 

  • Lumsden RD, Ridout CJ, Vendemia ME, Harrison DJ, Waters RM, Walter JF (1992) Characterization of major secondary metabolites produced in soilless mix by a formulated strain of the biocontrol fungus Gliocladium virens. Can J Microbiol 38:1274–1280

    Article  CAS  Google Scholar 

  • Mishra V (2010) In vitro antagonism of Trichoderma species against Pythium aphanidermatum. J Phytol 2:28–35

    Google Scholar 

  • Mpika J, Kebe IB, Issali AE, N'Guessan FK, Druzhinina S, Komon-Zelazowska M, Kubicek CP, Ake S (2009) Antagonist potential of Trichoderma indigenous isolates for biological control of Phytophthora palmivora the causative agent of black pod disease on cocoa (Theobroma cacao L.) in Cote d'Ivoire. Afr J Biotechnol 8:5280–5293

    Google Scholar 

  • Ndoumbe-Nkeng M, Cilas C, Nyemb E, Nyasse S, Bieysse D, Flori A, Sache I (2004) Impact of removing diseased pods on cocoa black pod caused by Phytophthora megakarya and on cocoa production in Cameroon. Crop Prot 23:415–424

    Article  Google Scholar 

  • Nyadanu D, Assuah MK, Adomako B, Asiama YO, Opoku IY, Adu-Ampomah Y (2009) Efficacy of screening methods used in breeding for black pod disease resistance varieties in cocoa. Afri Crop Sci J 17:175–186

    Google Scholar 

  • Nyassé S, Efombagn MIB, Kébé BI, Tahi M, Despréaux D, Cilas C (2007) Integrated management of Phytophthora diseases on cocoa (Theobroma cacao L): impact of plant breeding on pod rot incidence. Crop Prot 26:40–45

    Article  Google Scholar 

  • Puopolo G, Cimmino A, Palmieri MC, Giovannini O, Evidente A, Pertot I (2014) Lysobacter capsici AZ78 produces cyclo(L-Pro-L-Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and Plasmopara viticola. J Appl Microbiol 117:1168–1180

    Article  CAS  Google Scholar 

  • Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG (2007) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    Article  Google Scholar 

  • Saravanakumar K, Yu CJ, Dou K, Wang M, Li YQ, Chen J (2016) Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp cucumerinum. Biol Control 94:37–46

    Article  CAS  Google Scholar 

  • Seephonkai P, Kongsaeree P, Prabpai S, Isaka M, Thebtaranonth Y (2006) Transformation of an irregularly bridged epidithiodiketopiperazine to trichodermamide A. Org Lett 8:3073–3075

    Article  CAS  Google Scholar 

  • Segarra G, Aviles M, Casanova E, Borrero C, Trillas I (2013) Effectiveness of biological control of Phytophthora capsici in pepper by Trichoderma asperellum strain T34. Phytopathol Mediterr 52:77–83

    Google Scholar 

  • Seiber JN, Coats J, Duke SO, Gross AD (2014) Biopesticides: state of the art and future opportunities. J Agric Food Chem 62:11613–11619

    Article  CAS  Google Scholar 

  • Smith A, Blois J, Yuan H et al (2009) The antiproliferative cytostatic effects of a self-activating viridin prodrug. Mol Cancer Ther 8:1666–1675

    Article  CAS  Google Scholar 

  • Sriwati R, Melnick RL, Muarif R, Strem MD, Samuels GJ, Bailey BA (2015) Trichoderma from Aceh Sumatra reduce Phytophthora lesions on pods and cacao seedlings. Biol Control 89:33–41

    Article  Google Scholar 

  • Stipanovic RD, Howell CR (1982) The structure of gliovirin, a new antibiotic from Gliocladium virens. J Antibiot 35:1326–1330

    Article  CAS  Google Scholar 

  • Takeuchi K, Noda N, Katayose Y, Mukai Y, Numa H, Yamada K, Someya N (2015) Rhizoxin analogs contribute to the biocontrol activity of a newly isolated Pseudomonas strain. Mol Plant-Microbe Interact 28:333–342

    Article  CAS  Google Scholar 

  • Tanaka Y, Shiomi K, Kamei K et al (1998) Antimalarial activity of radicicol, heptelidic acid and other fungal metabolites. J Antibiot 51:153–160

    Article  CAS  Google Scholar 

  • Tondje PR, Hebbar KP, Samuels G, Bowers JH, Weise S, Nyemb E, Begoude D, Foko J, Fontem D (2006) Bioassay of Genicolosporium species for Phytophthora megakarya biological control on cacao pod husk pieces. Afr J Biotechnol 5:648–652

    Google Scholar 

  • Tondje PR, Roberts DP, Bon MC et al (2007) Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon. Biol Control 43:202–212

    Article  Google Scholar 

  • Trejo-Estrada SR, Paszczynski A, Crawford DL (1998) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J Ind Microbiol Biotechnol 21:81–90

    Article  CAS  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635

    CAS  Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72:2032–2035

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL et al (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8:127–139

    Article  Google Scholar 

  • Weisshoff H, Hentschel S, Zaspel I, Jarling R, Krause E, Pham TLH (2014) PPZPMs—a novel group of cyclic lipodepsipeptides produced by the Phytophthora alni associated strain Pseudomonas sp JX090307—the missing link between the viscosin and amphisin group. Nat Prod Commun 9:989–996

    CAS  Google Scholar 

  • Yamaguchi Y, Manita D, Takeuchi T, Kuramochi K, Kuriyama I, Sugawara F, Yoshida H, Mizushina Y (2010) Novel terpenoids, trichoderonic acids A and B isolated from Trichoderma virens, are selective inhibitors of family X DNA polymerases. Biosci Biotechnol Biochem 74:793–801

    Article  CAS  Google Scholar 

  • Zhou Y, Choi YL, Sun M, Yu ZN (2008) Novel roles of Bacillus thuringiensis to control plant diseases. Appl Microbiol Biotechnol 80:563–572

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank C. Bance for technical assistance, L. Dubost for mass spectra, A. Deville for NMR spectra, and J. Mpika for providing the Trichoderma strains used in this study. The Government of Ivory Coast is acknowledged for the PhD fellowship to G.-A. P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Buisson.

Additional information

Responsible editor: Philippe Garrigues

The preliminary results of this study were presented (oral communication) at the Congress “Natural Product & Biocontrol 2014.”

Electronic supplementary material

ESM 1

(PPTX 938 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakora, GA., Mpika, J., Kone, D. et al. Inhibition of Phytophthora species, agents of cocoa black pod disease, by secondary metabolites of Trichoderma species. Environ Sci Pollut Res 25, 29901–29909 (2018). https://doi.org/10.1007/s11356-017-0283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0283-9

Keywords

Navigation