Skip to main content

Advertisement

Log in

Energy transfer and kinetics in mechanochemistry

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mechanochemistry (MC) exerts extraordinary degradation and decomposition effects on many chlorinated, brominated, and even fluorinated persistent organic pollutants (POPs). However, its application is still limited by inadequate study of its reaction kinetic aspects. In the present work, the ball motion and energy transfer in planetary ball mill are investigated in some detail. Almost all milling parameters are summarised in a single factor—total effective impact energy. Furthermore, the MC kinetic between calcium oxide/Al and hexachlorobenzene is well established and modelled. The results indicate that total effective impact energy and reagent ratio are the two factors sufficient for describing the MC degradation degree of POPs. The reaction rate constant only depends on the chemical properties of reactants, so it could be used as an important index to appraise the quality of MC additives. This model successfully predicts the reaction rate for different operating conditions, indicating that it could be suitably applied for conducting MC reactions in other reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C 0 :

Original concentration of HCBz, mg g−1

C t :

Concentration of HCBz after a certain time of milling, mg g−1

C R :

Charge ratio (ball to sample ratio in w/w)

D 0 :

Total energy supplied to the powder being milled (total effective impact energy), J g−1

E t :

Ball impact energy, J

E e :

Ball effective impact energy, J

E eff :

Effective flexibility modulus of the collision media, GPa

f :

Ball hitting frequency, Hz

g r :

Geometrical constant

g p :

Geometrical constant

h 0 :

Thickness of the powder layer, m

K 1 :

Rate constant of Delogu’s model, mg J−1

K :

Rate constant of the model used in the present work, mg J−1

m b :

Mass of a single ball, g

m p :

Mass of pollutants, g

n B :

Number of balls

P t :

Ball impact power, W

P e :

Ball effective impact power, W

P 0 e :

Ball effective impact power per mass unit, W g−1

P n :

Normal impact pressure, Pa

R :

Reagent to pollutant ratio

RSS:

Root-sum square deviation

r d :

Distance between the centre of disk and pot, m

r v :

Radius of pot, m

r h :

Impact radius, m

r b :

Radius of balls, m

t :

Milling time, s

t 1 :

Time of ball detachment, s

t 2 :

Time of ball flight, s

t 3 :

Time of ball returning to the starting position, s

v :

Moving velocity of balls, m s−1

v x :

Component velocity of v in x axis, m s−1

v y :

Component velocity of v in y axis, m s−1

v n :

Ball normal impact relative velocity, m s−1

v r :

Radial velocity component of balls, m s−1

v v :

Linear velocity of hitting point on pot, m s−1

v vr :

Radial velocity component of v v , m s−1

χ:

Fractional conversion degree

χ i cal :

Conversion efficiency calculated by the model

χ i xp :

Conversion efficiency obtained from the experiments

X 2 :

x value of hitting point, m

X c2 :

x value of pot centre at hitting moment, m

Y 2 :

y value of hitting point, m

Y c2 :

y value of pot centre at hitting moment, m

Ω:

Rotation speed of the disk, rad s−1

ω :

Rotation speed of the pot, rad s−1

γ :

Ball impact angle, rad

θ 2 :

Rotation angle of disk, rad

ϕ 1 :

Rotation angle of pot, rad

δ max :

Deformation of the ball at maximum compression, m

θ 2 :

Rotation angle of disk, rad

ρ B :

Density of the balls, kg/m3

References

  • Aresta M, Caramuscio P, De Stefano L, Pastore T (2003) Solid state dehalogenation of PCBs in contaminated soil using NaBH4. Waste Manag 23:315–319

    Article  CAS  Google Scholar 

  • Aresta M, Dibenedetto A, Fragale C, Pastore T (2004) High-energy milling to decontaminate soils polluted by polychlorobiphenyls and atrazine. Environ Chem Lett 2:1–4

    Article  CAS  Google Scholar 

  • Bellingham TR (2008) Mechanochemical destruction of PCBs at Hunters Point Shipyard for the US Navy. In: WasteMINZ Annual Conference, Blenheim

  • Birke V, Brodowski M (2002) Economic and ecologically favorable detoxification of polyhalogenated pollutants applying the DMCR technology, in: International Workshop on “Mechanochemical processes for the environment” Science and industrial applications. Metea Research Center, Bari

    Google Scholar 

  • Butyagin P (2000) Mechanochemical synthesis: mechanical and chemical factors. J Mater Synth Process 8:205–211

    Article  CAS  Google Scholar 

  • Cagnetta G, Hassan MM, Huang J, Yu G, Weber R (2016a) Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling. Sci Rep-UK 6:1–13

  • Cagnetta G, Huang J, Wang B, Deng S, Yu G (2016b) A comprehensive kinetic model for mechanochemical destruction of persistent organic pollutants. Chem Eng J 291:30–38

    Article  CAS  Google Scholar 

  • Cagnetta G, Robertson J, Huang J, Zhang K, Yu G (2016c) Mechanochemical destruction of halogenated organic pollutants: a critical review. J Hazard Mater 313:85–102

    Article  CAS  Google Scholar 

  • Cagnetta G, Huang J, Lu M, Wang B, Wang Y, Deng S, Yu G (2017a) Defect engineered oxides for enhanced mechanochemical destruction of halogenated organic pollutants. Chemosphere 184:879–883

    Article  CAS  Google Scholar 

  • Cagnetta G, Zhang Q, Huang J, Lu M, Wang B, Wang Y, Deng S, Yu G (2017b) Mechanochemical destruction of perfluorinated pollutants and mechanosynthesis of lanthanum oxyfluoride: a waste-to-materials process. Chem Eng J 316:1078–1090

    Article  CAS  Google Scholar 

  • Chattopadhyay PP, Manna I, Talapatra S, Pabi SK (2001) A mathematical analysis of milling mechanics in a planetary ball mill. Mater Chem Phys 68:85–94

    Article  CAS  Google Scholar 

  • Chen Z, Lu S, Mao Q, Wang X, Yan J (2016) Energy transfer in mechanochemical treatment of POPs in a horizontal ball mill. Environ Chem 35:2134–2145

    Article  CAS  Google Scholar 

  • Chen Z, Mag Q, Lu S, Buekens A, Xu S, Wang X, Yan J (2017) Dioxins degradation and reformation during mechanochemical treatment. Chemosphere 180:130–140

    Article  CAS  Google Scholar 

  • Delogu F, Schiffini L, Cocco G (2001) The invariant laws of the amorphization processes by mechanical alloying—I. Experimental findings. Philos Mag A—Phys Condens Matter Struct Defects Mech Prop 81:1917–1937

    CAS  Google Scholar 

  • Delogu F, Orru R, Cao G (2003) A novel macrokinetic approach for mechanochemical reactions. Chem Eng Sci 58:815–821

    Article  CAS  Google Scholar 

  • Delogu F, Deidda C, Mulas G, Schiffini L, Cocco G (2004) A quantitative approach to mechanochernical processes. J Mater Sci 39:5121–5124

    Article  CAS  Google Scholar 

  • Lu S, Huang J, Peng Z, Li X, Yan J (2012a) Ball milling 2,4,6-trichlorophenol with calcium oxide: dechlorination experiment and mechanism considerations. Chem Eng J 195:62–68

    Article  Google Scholar 

  • Lu S, Mao Q, Peng Z, Li X, Yan J (2012b) Simulation of ball motion and energy transfer in a planetary ball mill. Chinese Phys B 21:1–9

  • Mao Q, Peng Z, Lu S, Li X, Yan J (2012) Mechanochemical degradation of OCDD/OCDF in fly ash from medical waste incinerators. Acta Chim Sin 70:659–666

    Article  CAS  Google Scholar 

  • Mao Q, Lu S, Chen Z, Yan J (2015) Mechanochemical decomposition of hexachlorobenzene with CaO-Al additives, p 423–426

  • Mao Q, Lu S, Wei Y, Li X, Yan J (2016) Mechanochemical decomposition of polychlorinated biphenyls contaminated soil using a horizontal ball mill. Environ Chem 35:607–614

    CAS  Google Scholar 

  • Maurice DR, Courtney TH (1990) The physics of mechanical alloying—a 1st report. Metall Trans A—Phys Metall Mater Sci 21:289–303

    Article  Google Scholar 

  • Mio H, Saeki S, Kano J, Saito F (2002) Estimation of mechanochemical dechlorination rate of poly(vinyl chloride). Environ Sci Technol 36:1344–1348

    Article  CAS  Google Scholar 

  • Mitoma Y, Miyata H, Egashira N, Simion AM, Kakeda M, Simion C (2011) Mechanochemical degradation of chlorinated contaminants in fly ash with a calcium-based degradation reagent. Chemosphere 83:1326–1330

    Article  CAS  Google Scholar 

  • Nah IW, Hwang K, Shul Y (2008) Effect of metal and glycol on mechanochemical dechlorination of polychlorinated biphenyls (PCBs). Chemosphere 73:138–141

    Article  CAS  Google Scholar 

  • Pizzigallo MDR, Leo PD, Ancona V, Spagnuolo M, Schingaro E (2011) Effect of aging on catalytic properties in mechanochemical degradation of pentachlorophenol by birnessite. Chemosphere 82:627–634

    Article  CAS  Google Scholar 

  • Rowlands SA, Hall AK, Mccormick PG, Street R, Hart RJ, Ebell GF, Donecker P (1994) Destruction of toxic materials. Nature 367:223

    Article  Google Scholar 

  • Sayler GS, Shon M, Colwell RR (1977) Growth of an estuarine Pseudomonas sp. on polychlorinated biphenyl. Microb Ecol 3:241–255

    Article  CAS  Google Scholar 

  • Stockholm Convention (2001) Full text for download in English, http://www.pops.int/documents/convtext/convtext_en.pdf

  • Tiernan TO, Wagel DJ, VanNess GF, Garrett JH, Solch JG, Hanes MS, Rogers CJ, Kornel A (1992) Treatment of complex chemical wastes with the base catalyzed decomposition (BCD) process. Oraganohalogen Compd 8:289–292

    Google Scholar 

  • Tongamp W, Zhang Q, Saito F (2006) Mechanochemical decomposition of PVC by using La2O3 as additive. J Hazard Mater 137:1226–1230

    Article  CAS  Google Scholar 

  • Tongamp W, Kano J, Zhang Q, Saito F (2008) Mechanochemical dechlorination of polyvinyl chloride with calcium sulfates. J Mater Cycles Waste 10:140–143

    Article  CAS  Google Scholar 

  • Weber R (2007) Relevance of PCDD/PCDF formation for the evaluation of POPs destruction technologies—review on current status and assessment gaps. Chemosphere 67:S109–S117

    Article  CAS  Google Scholar 

  • Wei Y, Yan J, Lu S, Li X (2009) Mechanochemical decomposition of pentachlorophenol by ball milling. J Environ Sci 21:1761–1768

    Article  CAS  Google Scholar 

  • Yan JH, Peng Z, Lu SY, Li XD, Ni MJ, Cen KF, Dai HF (2007) Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration. J Hazard Mater 147:652–657

    Article  CAS  Google Scholar 

  • Yan X, Liu X, Qi C, Wang D, Lin C (2015) Mechanochemical destruction of a chlorinated polyfluorinated ether sulfonate (F-53B, a PFOS alternative) assisted by sodium persulfate. RSC Adv 5:85785–85790

    Article  CAS  Google Scholar 

  • Zhang QW, Matsumoto H, Saito F, Baron M (2002) Debromination of hexabromobenzene by its co-grinding with CaO. Chemosphere 48:787–793

    Article  CAS  Google Scholar 

  • Zhang K, Huang J, Zhang W, Yu Y, Deng S, Yu G (2012) Mechanochemical degradation of tetrabromobisphenol A: performance, products and pathway. J Hazard Mater 243:278–285

    Article  CAS  Google Scholar 

  • Zhang K, Huang J, Yu G, Zhang Q, Deng S, Wang B (2013) destruction of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by ball milling. Environ Sci Technol 47:6471–6477

    CAS  Google Scholar 

  • Zhang K, Huang J, Wang H, Yu G, Wang B, Deng S, Kano J, Zhang Q (2014a) Mechanochemical destruction of decabromodiphenyl ether into visible light photocatalyst BiOBr. RSC Adv 4:14719–14724

    Article  CAS  Google Scholar 

  • Zhang W, Wang H, Huang J, Yu M, Wang F, Zhou L, Yu G (2014b) Acceleration and mechanistic studies of the mechanochemical dechlorination of HCB with iron powder and quartz sand. Chem Eng J 239:185–191

    Article  CAS  Google Scholar 

  • Zhang K, Cao Z, Huang J, Deng S, Wang B, Yu G (2016) Mechanochemical destruction of Chinese PFOS alternative F-53B. Chem Eng J 286:387–393

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 51676172, No. 51706201), the National Key Research and Development Program of China (2017YFC0703101), the Zhejiang Provincial Natural Science Foundation of China (R14E060001), the Zhejiang University’s Pao Yu-Kong International Fund, and the Program of Introducing Talents of Discipline to University (B08026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyong Lu.

Additional information

Responsible editor: Marcus Schulz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Lu, S., Mao, Q. et al. Energy transfer and kinetics in mechanochemistry. Environ Sci Pollut Res 24, 24562–24571 (2017). https://doi.org/10.1007/s11356-017-0028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0028-9

Keywords

Navigation