Skip to main content

Advertisement

Log in

Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this paper, we predict air pollutant concentration using a feedforward artificial neural network inspired by the mechanism of the human brain as a useful alternative to traditional statistical modeling techniques. The neural network is trained based on sparse response back-propagation in which only a small number of neurons respond to the specified stimulus simultaneously and provide a high convergence rate for the trained network, in addition to low energy consumption and greater generalization. Our method is evaluated on Hong Kong air monitoring station data and corresponding meteorological variables for which five air quality parameters were gathered at four monitoring stations in Hong Kong over 4 years (2012–2015). Our results show that our training method has more advantages in terms of the precision of the prediction, effectiveness, and generalization of traditional linear regression algorithms when compared with a feedforward artificial neural network trained using traditional back-propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdul-Wahab SA, Al-Alawi SM (2008) Prediction of sulfur dioxide (SO2) concentration levels from the mina Al-Fahal refinery in Oman using artificial neural networks. Am J Environ Sci 4:473–481

    Article  CAS  Google Scholar 

  • Anastasia P, Karakitsios SK, Kleanthous S, Kassomenos PA (2011) Forecasting hourly P M 10 concentration in Cyprus through ANN and multiple regression models: implications to local environmental management. Environ Sci Pollut Res 18:316–327

    Article  Google Scholar 

  • Barlow HB (1972) Single units and sensation: a neuron doctrine for perceptual psychology. Perception 1 (4):371–394

    Article  CAS  Google Scholar 

  • Beckerman BS, Jerrett M, Serre M, Martin RV, Lee S-J, van Donkelaar A, Ross Z, Su J, Burnett RT (2013) A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States. Environ Sci Technol 47(13):7233– 7241

    CAS  Google Scholar 

  • Bengio Y, LeCun Y (2007) Scaling learning algorithms towards AI. Large-scale Kernel Machines 34:1–41

    Google Scholar 

  • Briggs DJ, de Hoogh C, Gulliver J, Wills J, Elliott P, Kingham S, et al. (2000) A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments. Sci Total Environ 253:151–167

    Article  CAS  Google Scholar 

  • Cameletti M, Ignaccolo R, Bande S (2011) Comparing spatio-temporal models for particulate matter in Piemonte. Environmetrics 22:985–996

    Article  Google Scholar 

  • Chaloulakou A, Grivas G, Spyrellis N (2003) Neural network and multiple regression models for P M 10 prediction in Athens: a comparative assessment. Journal of the Air and Waste Manage 53:1183–1190

    Article  Google Scholar 

  • Chan KY, Jian L (2013) Identification of significant factors for air pollution levels using a neural network based knowledge discovery system. Neurocomputing 99:564–569

    Article  Google Scholar 

  • Cheng S, Li L, Chen D, Li J (2012) A neural network based ensemble approach for improving the accuracy of meteorological fields used for regional air quality modeling. J Environ Manag 112:404– 414

    Article  CAS  Google Scholar 

  • Cimorelli AJ, Perry SG, Venkatram A, Weil JC, Paine RJ, Wilson RB, Lee RF, Peters WD, Brode RW (2005) AERMOD: a dispersion model for industrial source applications. Part I: general model formulation and boundary layer characterization. J Appl Meteorol 44(5):682–693

    Article  Google Scholar 

  • Cocchi D, Greco F, Trivisano C (2007) Hierarchical space-time modeling of PM10 pollution. Atmos Environ 41:532–542

    Article  CAS  Google Scholar 

  • Corani G (2005) Air quality prediction in Milan: neural networks, pruned neural networks and lazy learning. Ecol Model 185:513–529

    Article  Google Scholar 

  • Dabberdt WF, Miller E (2000) Uncertainty, ensembles and air quality dispersion modeling: applications and challenges. Atmos Environ 34(27):4667–4673

    Article  CAS  Google Scholar 

  • de Gennaro G, Trizio L, Di Gilio A, Pey J, Perez N, Cusack M, Alastuey A, Querol X (2013) Neural network model for the prediction of PM10 daily concentrations in two sites in the western mediterranean. The Science of the total environment 65(7):875–883

    Article  Google Scholar 

  • Diaz-Robles LA, Ortega JC, Fu JS, Reed GD, Chow JC, Watson JG, Moncada-Herrera JA (2008) A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos Environ 42:8331–8340

    Article  CAS  Google Scholar 

  • Dutot AL, Rynkiewicz J, Steiner FE, Rude J (2007) A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environ Modell Softw 22:1261–1269

    Article  Google Scholar 

  • Elkamel A, Abdul-Wahab S, Bouhamra W, Alper E (2001) Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach. Adv Environ Res 5:47–59

    Article  CAS  Google Scholar 

  • Emenius G, Pershagen G, Berglind N, Kwon HJ, Lewne M, Nordvall S, Wickman M (2003) NO2, As a marker of air pollution, and recurrent wheezing in children: a nested case-control study within the BAMSE birth cohort. Occup Environ Med 60:876–881

    Article  CAS  Google Scholar 

  • Fasbender D, Brasseur O, Bogaert P (2009) Bayesian data fusion for space-time prediction of air pollutants: the case of NO2 in Belgium. Atmos Environ 43:4632–4645

    Article  CAS  Google Scholar 

  • Fuentes M, Raftery AE (2005) Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 61(1):36–45

    Article  Google Scholar 

  • Gardner MW, Dorling SR (1998) Artificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciences. Atmos Environ 32:2627–2636

    Article  CAS  Google Scholar 

  • Gobakisa K, Kolokotsab D, Synnefac A, Saliari M, Giannopoulouc K, Santamourisc M (2011) Development of a model for urban heat island prediction using neural network techniques. Sustainable Cities and Society 1:104–115

    Article  Google Scholar 

  • Gulliver J, Morris C, Lee K, Vienneau D, Briggs D, Hansell A (2011) Land use regression modeling to estimate historic (1962–1991) concentration of black smoke and sulfur dioxide for Great Britain. Environ Sci Technol 45:3526–3532

    Article  CAS  Google Scholar 

  • Hass H, Builtjes P, Simpson D, Stern R (1997) Comparison of model results obtained with several European regional air quality models. Atmos Environ 31(19):3259–3279

    Article  CAS  Google Scholar 

  • Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, et al. (2008) A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ:7561–7578

  • Hubbard M, Cobourn WG (1998) Development of a regression model to forecast ground-level ozone concentration in Louisville, KY. Atmos Environ 32:2637–2647

    Article  CAS  Google Scholar 

  • Huerta G, Sanso B, Stroud JR (2004) A spatio-temporal model for Mexico City ozone levels. J R Stat Soc Ser C 53:231–248

    Article  Google Scholar 

  • Johnson M, Isakov V, Touma JS, Mukerjee S, Ozkaynak H (2010) Evaluation of land-use regression models used to predict air quality concentrations in an urban area. Atmos Environ 44:3660–3668

    Article  CAS  Google Scholar 

  • Jun M, Stein ML (2004) Statistical comparison of observed and CMAQ modeled daily sulfate levels. Atmos Environ 38:4427–4436

    Article  CAS  Google Scholar 

  • Kalnay (2002) Atmospheric modelling, data assimilation and predictability. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kolehmainen M, Martikainen H, Hiltunen T, Ruuskanen J (2000) Forecasting air quality parameters using hybrid neural network modelling. Environ Monit Assess 65:277–286

    Article  CAS  Google Scholar 

  • Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc S Afr 52(6):119–139

    Google Scholar 

  • Kurt A, Oktay AB (2010) Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Syst Appl 37:7986–7992

    Article  Google Scholar 

  • Kurt A, Gulbagai B, Karaca F, Alagha O (2008) An online air pollution forecasting system using neural networks. Environ Int 34:592– 598

    Article  CAS  Google Scholar 

  • Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. Optical Society of America 20(7):1434–1448

    Article  Google Scholar 

  • Lee TS, Mumford D, Romero R (1998) The role of the primary visual cortex in higher level vision. Vis Res 38(15):2429–2454

    Article  CAS  Google Scholar 

  • Mahiyudin W, Sahani M, Aripin R, Latif MT, Thach TQ, Wong CM (2013) Short-term effects of daily air pollution on mortality. Atmos Environ 65:69–79

    Article  Google Scholar 

  • McMillan N, Bortnick SM, Irwin ME, Berliner M (2005) A hierarchical Bayesian model to estimate and forecast ozone through space and time. Atmos Environ 39:1373–1382

    Article  CAS  Google Scholar 

  • Mikko K, Martikainen H, Hiltunen T, Ruuskanen J (2000) Forecasting air quality parameters using hybrid neural network modelling. Environ Monit Assess 65:277–286

    Article  Google Scholar 

  • Moustris KP, Ziomas IC, Paliatsos AG (2010) 3-day-ahead forecasting of reginal pollution index for the pollutants NO2, CO, SO2, and O3 using artificial neural networks in Athens, Greece. Water Air Soil Pollut 209:29–43

    Article  CAS  Google Scholar 

  • Nair V, Hinton GE (2009) 3D object recognition with deep belief nets. In: Proceedings of the 24th annual conference on neural information processing systems, pp 1339–1347

  • Nelson MM, Illingworth WT (1991) A practical guide to neural nets. Addison-Wesely, Boston

    Google Scholar 

  • Rozante JR, Moreira DS, De Goncalves LGG, Vila DA (2010) Combining TRMM and surface observations of precipitation: technique and validation over South America. Am Meteorol Soc 25:885–894. doi:10.1175/2010WAF2222325.1

    Google Scholar 

  • Sahu SK, Gelfand AE, Holland DM (2006) Spatio-temporal modeling of fine particulate matter. J Agric Biol Environ Stat 11:61–86

    Article  Google Scholar 

  • Serre T, Wolf L, Bileschi S et al. (2007) Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell 29(3):11–426

    Article  Google Scholar 

  • Silva C, Perez P, Trier A (2001) Statistical modeling and prediction of atmospheric pollution by particulate material: two nonparametric approaches. Environmentrics 12:147–159

    Article  CAS  Google Scholar 

  • Tobler W (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46(2):234–240

    Article  Google Scholar 

  • Wu J, Li J, Peng J, Li W, Xu G, Dong C (2015) Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China. Environ Sci Pollut Res 22(9):7045–7061

    Article  CAS  Google Scholar 

  • Zhang J-S, Ji N-N, Liu J-M, Pan J-Y, Meng D-Y (2015) Enhancing performance of the backpropagation algorithm via sparse response regularization. Neurocomputing 153:20–40

    Article  Google Scholar 

  • Zou B, Wang M, Wan N, Gaines Wilson J, Fang X, Tang Y (2015) Spatial modeling of PM2.5 concentrations with a multi-factoral radial basis function neural network. Environ Sci Pollut Res 22(14):10395–10404

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Basic Research Program of China (973 Program) under Grant No. 2013CB329404, the Major Research Project of the National Natural Science Foundation of China under Grant No. 91230101, the National Natural Science Foundation of China under Grant Nos. 61075006 and 11201367, the Key Project of the National Natural Science Foundation of China under Grant No.11131006, and the Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20100201120048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangshe Zhang.

Additional information

Responsible Editor: Marcus Schulz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Zhang, J. & Leung, Y. Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks. Environ Sci Pollut Res 23, 19481–19494 (2016). https://doi.org/10.1007/s11356-016-7149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7149-4

Keywords

Navigation