Skip to main content
Log in

High-VOC biochar—effectiveness of post-treatment measures and potential health risks related to handling and storage

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biochar can contain volatile organic compounds (VOCs), formed and introduced during the pyrolysis process. In some pyrolysis units or under specific conditions during production, pyrolysis vapours can deposit on biochar in significant amounts resulting in high-VOC biochar. In this study, it was tested to which extent VOCs are released from such high-VOC biochars when openly stored, which post-treatment measures are most effective in reducing phytotoxic potential and whether the VOC emissions could exceed human health-related threshold values. It was shown that the initial VOC release of high-VOC biochars can exceed occupational exposure limit values and even after 2 months, the biochars still emitted VOCs exceeding air quality guideline values. Consequently, these specific high-VOC biochars pose health risks when handled or stored openly. Simple open-air storage turned out to be insufficient for VOC removal. Low temperature treatment, on the other hand, removed VOCs from the high-VOC biochars effectively and alleviated any human health risks and phytotoxic effects. In addition to the high-VOC biochars, a low-VOC biochar was tested which did not emit any VOCs and was even able to sorb VOCs from the VOC-rich biochar to a certain extent. Thermal treatment and blending with low-VOC biochar are methods which could be used in practise to treat high-VOC biochar, reducing VOC emissions. This study revealed significant new findings on the topic of VOCs in biochar which highlights the need to include VOCs in the list of priority contaminants in biochar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

VOC:

Volatile organic compound

PAH:

Polycyclic aromatic hydrocarbon

GC biochar:

Gas contaminated biochar

LC biochar:

Liquid contaminated biochar

NC biochar:

Non-contaminated biochar

LMW:

Low-molecular weight

References

  • Arbeitsgemeinschaft Ökologischer Forschungsintitute (2013) AGÖF Guidance Values for Volatile Organic Compounds in Indoor Air. Springe-Eldagsen

  • Ausschuss zur Gesundheitlichen Bewertung von Bauprodukten (2012) Health-related evaluation procedure for volatile organic compounds emissions (VOC and SVOC) from building products. 1–25.

  • Aussschuss für Gefahrstoffe (2006) TRGS 900, Technische Regeln für Gefahrstoffe. Bundesarbeitsblatt 1:41–55

    Google Scholar 

  • Bargmann I, Rillig MC, Buss W, et al. (2013) Hydrochar and biochar effects on germination of spring barley. J Agron Crop Sci 199:360–373. doi:10.1111/jac.12024

    Article  CAS  Google Scholar 

  • Brown R, del Campo B, Boateng AA, et al. (2015) Chapter 3: fundamentals of biochar production. Biochar Environ. Manag. Sci. Technol. Implementation, Second Ed. Earthscan Ltd., London., pp 39–61

  • Bucheli TD, Hilber I, Schmidt HP (2015) Chapter 21: polycyclic aromatic hydrocarbons and polychlorinated aromatic compounds in biochar. Biochar Environ. Manag. Sci. Technol. Implementation, Second Ed. Earthscan Ltd., London., pp 595–624

  • Busch D, Kammann C, Grünhage L, Müller C (2012) Simple biotoxicity tests for evaluation of carbonaceous soil additives: establishment and reproducibility of four test procedures. J Environ Qual 41:1023–1032. doi:10.2134/jeq2011.0122

    Article  CAS  Google Scholar 

  • Buss W, Mašek O (2014) Mobile organic compounds in biochar—a potential source of contamination – phytotoxic effects on cress seed (Lepidium sativum) germination. J Environ Manag 137:111–119. doi:10.1016/j.jenvman.2014.01.045

    Article  CAS  Google Scholar 

  • Buss W, Graham MC, MacKinnon G, Mašek O (2016a) Strategies for producing biochars with minimum PAH contamination. J Anal Appl Pyrolysis 119:24–30. doi:10.1016/j.jaap.2016.04.001

    Article  CAS  Google Scholar 

  • Buss W, Graham MC, Shepherd GJ, Mašek O (2016b) Suitability of marginal biomass-derived biochars for soil amendment. Sci Total Environ 547:314–322. doi:10.1016/j.scitotenv.2015.11.148

    Article  CAS  Google Scholar 

  • Buss W, Mašek O, Graham M, Wüst D (2015) Inherent organic compounds in biochar–their content, composition and potential toxic effects. J Environ Manag 156:150–157. doi:10.1016/j.jenvman.2015.03.035

    Article  CAS  Google Scholar 

  • Chiang Y, Chiang P, Chang PE (2001) Effects of surface characterisitics of activated carbons on VOC adsorption. J Environ Sci 54–62.

  • Deenik JL, McClellan T, Uehara G, et al. (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74:1259–1270. doi:10.2136/sssaj2009.0115

    Article  CAS  Google Scholar 

  • Directive 2004/42/CE of the European parliament and of the council (2004) On the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending directive 1999/13/EC. Off J Eur Union L143:87–96

    Google Scholar 

  • Domene X, Enders A, Hanley K, Lehmann J (2015) Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature. Sci Total Environ 512-513:552–561. doi:10.1016/j.scitotenv.2014.12.035

    Article  CAS  Google Scholar 

  • Elad Y, Cytryn E, Harel YM, et al. (2011) The biochar effect: plant resistance to biotic stresses. Phytopathol Mediterr 50:335–349

    Google Scholar 

  • EU Commission Directive 2000/39/EC (2000) Establishing a first list of indicative occupational exposure limit values in implementation of Council Directive 98/24/EC on the protection of the health and safety of workers from the risks related to chemical agents at work. Off J Eur Communities L142:47–50. http://eur-lex.europa.eu/pri/en/oj/dat/2003/l_285/l_28520031101en00330037.pdf

  • EU Commission Directive 2006/15/EC (2006) Establishing a second list of indicative occupational exposure limit values in implementation of Council Directive 98/24/EC and amending directives 91/322/EEC and 2000/39/EC. Off J Eur Union L 38:36–39

    Google Scholar 

  • EU Commission Directive 2009/161/EU (2009) Establishing a third list of indicative occupational exposure limit values in implementation of Council Directive 98/24/EC and amending Commission Directive 2000/39/EC. Off J Eur Union L338:87–89

    Google Scholar 

  • EU Commission Directive 91/322/ECC (1991) On establishing indicative limit values by implementing Council Directive 80/1107/EEC on the protection of workers from the risks related to exposure to chemical, physical and biological agents at work. Off J Eur Communities L 177:22. doi:2004R0726 - v.7 of 05.06.2013

  • European Union Joint Research Centre (2013) Report No 29: harmonisation framework for health based evaluation of indoor emissions from construction products in the European Union using the EU-LCI concept.

  • Gell K, van Groenigen J, Cayuela ML (2011) Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity. J Hazard Mater 186:2017–2025. doi:10.1016/j.jhazmat.2010.12.105

    Article  CAS  Google Scholar 

  • Hale SE, Lehmann J, Rutherford D, et al. (2012) Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46:2830–2838. doi:10.1021/es203984k

    Article  CAS  Google Scholar 

  • Hilber I, Blum F, Hale S, et al. (2012) Total and bioavailable PAH concentrations in biochar – a future soil improver. Geophycial Reseach Abstr. EGU Gen. Assem. 2012. p 1

  • Jones DL, Quilliam RS (2014) Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application. J Hazard Mater 276:362–370. doi:10.1016/j.jhazmat.2014.05.053

    Article  CAS  Google Scholar 

  • Keeley SC, Pizzorno M (1986) Charred wood stimulated germination of two fire-following herbs of the California chaparral and the role of hemicellulose. Am J Bot 73:1289–1297

    Article  CAS  Google Scholar 

  • Kołtowski M, Oleszczuk P (2015) Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment. Ecol Eng 75:79–85. doi:10.1016/j.ecoleng.2014.11.004

    Article  Google Scholar 

  • Kwapinski W, Byrne CMP, Kryachko E, et al. (2010) Biochar from biomass and waste. Waste and Biomass Valorization 1:177–189. doi:10.1007/s12649-010-9024-8

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2015) Chapter 1: Biochar for environmental managment: an introduction. Biochar Environ. Manag. Sci. Technol. Implementation, Second Ed. Earthscan Ltd., London., pp 1–13

  • Li J, Li Z, Liu B, et al. (2008) Effect of relative humidity on adsorption of formaldehyde on modified activated carbons. Chin J Chem Eng 16:871–875. doi:10.1016/S1004-9541(09)60008-2

    Article  CAS  Google Scholar 

  • Oleszczuk P, Jośko I, Kuśmierz M (2013) Biochar properties regarding to contaminants content and ecotoxicological assessment. J Hazard Mater 260:375–382. doi:10.1016/j.jhazmat.2013.05.044

    Article  CAS  Google Scholar 

  • Rajkovich S, Enders A, Hanley K, et al. (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48:271–284. doi:10.1007/s00374-011-0624-7

    Article  CAS  Google Scholar 

  • Rodríguez-Mirasol J, Bedia J, Cordero T, Rodríguez JJ (2005) Influence of water vapor on the adsorption of VOCs on lignin-based activated carbons. Sep Sci Technol (Philadelphia, PA, U S) 40:3113–3135. doi:10.1080/01496390500385277

    Article  Google Scholar 

  • Rogovska N, Laird D, Cruse RM, et al. (2012) Germination tests for assessing biochar quality. J Environ Qual 41:1014–1022. doi:10.2134/jeq2011.0103

    Article  CAS  Google Scholar 

  • Smith CR, Buzan EM, Lee JW (2013) Potential impact of biochar water-extractable substances on environmental sustainability. ACS Sustain Chem Eng 1:118–126. doi:10.1021/sc300063f

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Bol R (2010) A review of biochar and its use and Ffunction in soil. Adv. Agron. Vol. 105, 1st ed. Elsevier Inc., pp 47–82

  • Spokas KA, Novak JM, Stewart CE, et al. (2011) Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85:869–882. doi:10.1016/j.chemosphere.2011.06.108

    Article  CAS  Google Scholar 

  • US Department of Health and Human Services (2007) NIOSH Pocket guide to chemical hazards. Cincinnati, Ohio

    Google Scholar 

  • Youmans HL (1972) Measurement of pH of distilled water. J Chem Educ 49:429

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Mašek.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

ESM 1

(DOCX 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buss, W., Mašek, O. High-VOC biochar—effectiveness of post-treatment measures and potential health risks related to handling and storage. Environ Sci Pollut Res 23, 19580–19589 (2016). https://doi.org/10.1007/s11356-016-7112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7112-4

Keywords

Navigation