Skip to main content

Advertisement

Log in

Exploring the correlations between antibiotics and antibiotic resistance genes in the wastewater treatment plants of hospitals in Xinjiang, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Various antibiotics have been extensively used to treating infectious diseases in hospitals. In this study, the abundance and diversity of antibiotics and antibiotic resistance genes (ARGs) were observed in the wastewater samples from five hospitals in Xinjiang, China. The total concentrations of tetracyclines, sulphonamides, and quinolones in hospital influents ranged from 363.4 to 753.3 ng/L, 285.5 to 634.9 ng/L, and 1355.8 to 1922.4 ng/L, respectively. However, the removal efficiency of tetracyclines, sulphonamides, and quinolones in wastewater treatment processes ranged from 72.4 to 79.3 %, 36.0 to 52.2 %, and 45.1 to 55.4 %, respectively. The contamination levels of the selected ARGs varied in all wastewater samples. The highest relative concentrations of sul1, sul2, tetQ, and qnrS were significantly higher than those of other ARGs in this study. Significant positive correlations between the relative abundance of partial ARGs and concentrations of certain antibiotics were observed in hospital wastewaters. Results show that integrons played an important role in disseminating and distributing ARGs in microorganism systems. Furthermore, strong correlations were observed between tetQ, sulphonamide resistance genes (except sulA) and intI1. This study aimed to determine the contamination levels of antibiotics and ARGs and analyze the relationships among ARGs, and antibiotics and integron genes in hospital wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adelowo OO, Fagade OE (2009) The tetracycline resistance gene tet39 is present in both Gram-negative and Gram-positive bacteria from a polluted river, Southwestern Nigeria. Lett Appl Microbiol 48:167–172. doi:10.1111/j.1472-765X.2008.02523.x

    Article  CAS  Google Scholar 

  • Akinbowale OL, Peng H, Barton MD (2007) Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. J Appl Microbiol 103:2016–2025. doi:10.1111/j.1365-2672.2007.03445.x

    Article  CAS  Google Scholar 

  • Aktan Y, Tan S, Icgen B (2013) Characterization of lead-resistant river isolate Enterococcus faecalis and assessment of its multiple metal and antibiotic resistance. Environ Monit Assess 185(6):5285–5293. doi:10.1007/s10661-012-2945-x

    Article  CAS  Google Scholar 

  • Aminov RI, Garrigues JN, Mackie RI (2001) Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl Environ Microbiol 67:22–32. doi:10.1128/AEM.67.1.22-32.2001

    Article  CAS  Google Scholar 

  • Belinda H, Elisabet M, Meritxell G, Pilar L, Marcelo P, Joan A, Damià B, Jose LB, Sara RM, Rafael M (2013) Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Sci Total Environ 456–457:161–170. doi:10.1016/j.scitotenv.2013.03.071

    Google Scholar 

  • Berglund B, Fick J, Lindgren PE (2015) Urban wastewater effluent increases antibiotic resistance gene concentrations in a receiving northern European river. Environ Toxicol Chem 32:192–196. doi:10.1002/etc.2784

    Article  Google Scholar 

  • Brown MG, Balkwill DL (2009) Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Microb Ecol 57(3):484–93. doi:10.1007/s00248-008-9431-6

    Article  CAS  Google Scholar 

  • Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P (2007) Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother 60:394–397. doi:10.1093/jac/dkm204

    Article  CAS  Google Scholar 

  • Chen B, Liang X, Nie X, Huang X, Zou S, Li X (2015) The role of class I integrons in the dissemination of sulfonamide resistance genes in the Pearl River and Pearl River Estuary, South China. J Hazard Mater 282:61–67. doi:10.1016/j.jhazmat.2014.06.010

    Article  CAS  Google Scholar 

  • Cheng W, Chen H, Su C, Yan S (2013) Abundance and persistence of antibiotic resistance genes in livestock farms: a comprehensive investigation in eastern China. Environ Int 61C:1–7. doi:10.1016/j.envint.2013.08.023

    Article  Google Scholar 

  • Dahmen S, Poirel L, Mansour W, Bouallègue O, Nordmann P (2010) Prevalence of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae from Tunisia. Clin Microbiol Infect 16:1019–1023. doi:10.1111/j.1469-0691.2009.03010.x

    Article  CAS  Google Scholar 

  • De Souza MJ, Nair S, Loka Bharathi PA, Chan DD (2006) Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology 15(4):379–384

    Article  Google Scholar 

  • Dorival-García N, Zafra-Gómez A, Navalón A, González J, Vílchez JL (2013) Removal of quinolone antibiotics from wastewaters by sorption and biological degradation in laboratory-scale membrane bioreactors. Sci Total Environ 442:317–328. doi:10.1016/j.scitotenv.2012.10.026

    Article  Google Scholar 

  • Gao P, Mao D, Luo Y, Wang L, Xu B, Xu L (2012) Occurrence of sulfonamide and tetracycline resistant bacteria and resistance genes in aquaculture environment. Water Res 46:2355–2364. doi:10.1016/j.watres.2012.02.004

    Article  CAS  Google Scholar 

  • Goldstein C, Lee MD, Sanchez S, Hudson C, Phillips B, Register B, Grady M, Liebert C, Summers AO, White DG, Maurer JJ (2001) Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob Agents Chemother 45:723–726. doi:10.1128/AAC.45.3.723-726.2001

    Article  CAS  Google Scholar 

  • Guillard T, Moret H, Brasme L, Carlier A, Vernet-Garnier V, Cambau E, de Champs C (2011) Rapid detection of qnr and qepA plasmid-mediated quinolone resistance genes using real-time PCR. Diagn Microbiol Infect Dis 70:253–259. doi:10.1016/j.diagmicrobio.2011.01.004

    Article  CAS  Google Scholar 

  • Hassan SA, Altalhi AD, Gherbawy YA, EI-Deeb BA (2011) Bacterial load of fresh vegetables and their resistance to the currently used antibiotics in Saudi Arabia. Foodborne Pathog Dis 8(9):1011–1018. doi:10.1089/fpd.2010.0805

    Article  Google Scholar 

  • Huang MH, Zhang W, Liu C, Hu HY (2015) Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant. Process Saf Environ Prot 93:68–74. doi:10.1016/j.psep.2014.04.004

    Article  CAS  Google Scholar 

  • Jiang H, Zhang D, Xiao S, Geng C, Zhang X (2013a) Occurrence and sources of antibiotics and their metabolites in river water, WWTPs, and swine wastewater in Jiulongjiang River basin, south China. Environ Sci Pollut Res 20:9075–9083. doi:10.1007/s11356-013-1924-2

    Article  CAS  Google Scholar 

  • Jiang L, Hu X, Xu T, Zhang H, Sheng D, Yin D (2013b) Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Sci Total Environ 458–460:267–272. doi:10.1016/j.scitotenv.2013.04.038

    Article  Google Scholar 

  • Karthikeyan KG, Meyer MT (2006) Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci Total Environ 361:196–207. doi:10.1016/j.scitotenv.2005.06.030

    Article  CAS  Google Scholar 

  • Kim SR, Nonaka L, Suzuki S (2004) Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. FEMS Microbiol Lett 237(1):147–156. doi:10.1016/j.femsle.2004.06.026

    Article  CAS  Google Scholar 

  • Li J, Wang T, Shao B, Shen J, Wang S, Wu Y (2012) Plasmid-mediated quinolone resistance genes and antibiotic residues in wastewater and soil adjacent to swine feedlots: potential transfer to agricultural lands. Environ Health Perspect 120:1144–1149. doi:10.1289/ehp.1104776

    Article  CAS  Google Scholar 

  • Li W, Shi Y, Gao L, Liu J, Cai Y (2013) Occurrence and removal of antibiotics in a municipal wastewater reclamation plant in Beijing, China. Chemosphere 92:435–444. doi:10.1016/j.chemosphere.2013.01.040

    Article  CAS  Google Scholar 

  • Liu M, Zhang Y, Yang M, Tian Z, Ren L, Zhang S (2012) Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environ Sci Technol 46(14):7551–7557. doi:10.1021/es301145m

    Article  CAS  Google Scholar 

  • Liu L, Liu YH, Wang Z, Liu CX, Huang X, Zhu GF (2014) Behavior of tetracycline and sulfamethazine with corresponding resistance genes from swine wastewater in pilot-scale constructed wetlands. J Hazard Mater 278:304–310. doi:10.1016/j.jhazmat.2014.06.015

    Article  CAS  Google Scholar 

  • Luo Y, Mao D, Rysz M, Zhou Q, Zhang H, Xu L, J J Alvarez P (2010) Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ Sci Technol 44:7720–7225. doi:10.1021/es100233w

    Google Scholar 

  • Luo Y, Xu L, Rysz M, Wang Y, Zhang H, Alvarez PJ (2011) Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environ Sci Technol 45:1827–1833. doi:10.1021/es104009s

    Article  CAS  Google Scholar 

  • MacDougall C, Powell JP, Johnson CK, Edmond MB, Polk RE (2005) Hospital and community fluoroquinolone use and resistance in Staphylococcus aureus and Escherichia coli in 17 US hospitals. Clin Infect Dis 41:435–440. doi:10.1086/432056

    Article  CAS  Google Scholar 

  • Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4:608–620. doi:10.1038/nrmicro1462

    Article  CAS  Google Scholar 

  • McKinney CW, Loftin KA, Meyer MT, Davis JG, Pruden A (2010) tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environ Sci Technol 44:6102–6109. doi:10.1021/es9038165

    Article  CAS  Google Scholar 

  • Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70(1):202–213

    Article  CAS  Google Scholar 

  • Nõlvak H, Truu M, Tiirik K, Oopkaup K, Sildvee T, Kaasik A, Mander Ü, Truu J (2013) Dynamics of antibiotic resistance genes and their relationships with system treatment efficiency in a horizontal subsurface flow constructed wetland. Sci Total Environ 461-462C:636–644. doi:10.1016/j.scitotenv.2013.05.052

    Article  Google Scholar 

  • Pei R, Kim SC, Carlson KH, Pruden A (2006) Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40:2427–2435. doi:10.1016/j.watres.2006.04.017

    Article  CAS  Google Scholar 

  • Resende JA, Silva VL, de Oliveira TL, de Oliveira FS, da Costa CJ, Otenio MH, Diniz CG (2014) Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure. Bioresour Technol 153:284–91. doi:10.1016/j.biortech.2013.12.007

    Article  CAS  Google Scholar 

  • Robicsek A, Jacoby GA, Hooper DC (2006) The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6:629–640. doi:10.1016/S1473-3099(06)70599-0

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, Borrego CM, Barceló D, Balcázar JL (2015) Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res 69:234–242. doi:10.1016/j.watres.2014.11.021

    Article  CAS  Google Scholar 

  • Ruimy R, Brisabois A, Bernede C, Skurnk D, Barnat S, Arlet G, Momcilovic S, Elbaz S, Moury F, Vibet MA, Courvalin P, Guillemot D, Andremont A (2010) Organic and conventional fruits and vegetables contain equivalent counts of Gram-negative bacteria expressing resistance to antibacterial agents. Environ Microbiol 12(3):608–615. doi:10.1111/j.1462-2920.2009.02100.x

    Article  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759. doi:10.1016/j.chemosphere.2006.03.026

    Article  CAS  Google Scholar 

  • Sayah RS, Kaneene JB, Johnson Y, Miller R (2005) Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic-and wild-animal fecal samples, human septage, and surface water. Appl Environ Microbiol 71:1394–1404. doi:10.1128/AEM.71.3.1394-1404.2005

    Article  CAS  Google Scholar 

  • Su HC, Ying GG, Tao R, Zhang RQ, Zhao JL, Liu YS (2012) Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China. Environ Pollut 169:42–49. doi:10.1016/j.envpol.2012.05.007

    Article  CAS  Google Scholar 

  • Tahrani L, Soufi L, Mehri I, Najjari A, Hassan A, Van Loco J, Reyns T, Cherif A, Mansour HB (2015) Isolation and characterization of antibiotic-resistant bacteria from pharmaceutical industrial wastewaters. Microb Pathog 89:54–61. doi:10.1016/j.micpath.2015.09.001

    Article  CAS  Google Scholar 

  • Tao CW, Hsu BM, Ji WT, Hsu TK, Kao PM, Hsu CP, Shen SM, Shen TY, Wan TJ, Huang YL (2014) Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Sci Total Environ 496:116–121. doi:10.1016/j.scitotenv.2014.07.024

    Article  CAS  Google Scholar 

  • Udikovic-KoLic N, Wichmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci U S A 111(42):15202–7. doi:10.1073/pnas.1409836111

    Article  CAS  Google Scholar 

  • Wu C, Spongberg AL, Witter JD (2009) Sorption and biodegradation of selected antibiotics in biosolids. J Environ Sci Health 44:454–461. doi:10.1080/10934520902719779

    Article  CAS  Google Scholar 

  • Xu J, Xu Y, Wang H, Guo C, Qiu H, He Y, Zhang Y, Li X, Meng W (2015) Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 119:1379–1385. doi:10.1016/j.chemosphere.2014.02.040

    Article  CAS  Google Scholar 

  • Yang SF, Lin CF, Wu CJ, Ng KK, Lin AY, Hong PK (2012) Fate of sulfonamide antibiotics in contact with activated sludge—sorption and biodegradation. Water Res 46:1301–1308. doi:10.1016/j.watres.2011.12.035

    Article  CAS  Google Scholar 

  • Zhang XX, Zhang T (2011) Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations. Environ Sci Technol 45(7):2598–2604. doi:10.1021/es103672x

    Article  CAS  Google Scholar 

  • Zhang XX, Zhang T, Zhang M, Fang HH, Cheng SP (2009) Characterization and quantification of class 1 integrons and associated gene cassettes in sewage treatment plants. Appl Microbiol Biotechnol 182:1169–1177. doi:10.1007/s00253-009-1886-y

    Article  Google Scholar 

  • Zhou T, Lu J, Tong Y, Li S, Wang X (2014) Distribution of antibiotic resistance genes in Bosten Lake, Xinjiang, China. Water Sci Technol 70(5):925–931. doi:10.2166/wst.2014.321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University. This research was supported by the National Science Foundation of China (No. 21267019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjiang Lu.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Lu, J., Liu, J. et al. Exploring the correlations between antibiotics and antibiotic resistance genes in the wastewater treatment plants of hospitals in Xinjiang, China. Environ Sci Pollut Res 23, 15111–15121 (2016). https://doi.org/10.1007/s11356-016-6688-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6688-z

Keywords

Navigation