Skip to main content
Log in

Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Neosartorya fischeri, an Aspergillaceae fungus, was evaluated in its capacity to transform high molecular weight polycyclic aromatics hydrocarbons (HMW-PAHs) and the recalcitrant fraction of petroleum, the asphaltenes. N. fischeri was able to grow in these compounds as sole carbon source. Coronene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene, together with the asphaltenes, were assayed for fungal biotransformation. The transformation of the asphaltenes and HMW-PAHs was confirmed by reverse-phase high-performance liquid chromatography (HPLC), nano-LC mass spectrometry, and IR spectrometry. The formation of hydroxy and ketones groups on the PAH molecules suggest a biotransformation mediated by monooxygenases such as cytochrome P450 system (CYP). A comparative microarray with the complete genome from N. fischeri showed three CYP monooxygenases and one flavin monooxygenase genes upregulated. These findings, together with the internalization of aromatic substrates into fungal cells and the microsomal transformation of HMW-PAHs, strongly support the role of CYPs in the oxidation of these recalcitrant compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baillie GS, Hitchcock CA, Burnet FR (1996) Increased cytochrome P-450 activity in Aspergillus fumigatus after xenobiotic exposure. Med Mycol 34:341–347

    Article  CAS  Google Scholar 

  • Barajas-Aceves M, Hassan M, Tinoco R, Vazquez-Duhalt R (2002) Effect of pollutants on the ergosterol content as indicator of fungal biomass. J Microbiol Methods 50:227–236

    Article  CAS  Google Scholar 

  • Bertrand JC, Rambeloarisoa E, Rontani JF, Giusti G, Mattei G (1983) Microbial degradation of crude oil in sea water in continuous culture. Biotechnol Lett 5:567–572

    Article  Google Scholar 

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333

    Article  CAS  Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin Heidelberg, pp 2079–2110

    Chapter  Google Scholar 

  • Cerniglia CE, Yang SK (1984) Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl Environ Microbiol 47:119–124

    CAS  Google Scholar 

  • Cerniglia CE, Gibson DT, Dodge RH (1994) Metabolism of benz[a]anthracene by the filamentous fungus Cunninghamella elegans. Appl Environ Microbiol 60:3931–3938

    CAS  Google Scholar 

  • da Silva M, Esposito E, Moody JD, Canhos VP, Cerniglia CE (2004) Metabolism of aromatic hydrocarbons by the filamentous fungus Cyclothyrium sp. Chemosphere 57:943–952

    Article  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13

    Google Scholar 

  • Doddapaneni H, Yadav JS (2005) Microarray-based global differential expression profiling of P450 monooxygenases and regulatory proteins for signal transduction pathways in the white rot fungus Phanerochaete chrysosporium. Mol Genet Genomic Med 274:454–466

    Article  CAS  Google Scholar 

  • Fayeulle A, Veignie E, Slomianny C, Dewailly E, Munc J-C, Rafin C (2014) Energy-dependent uptake of benzo[a]pyrene and its cytoskeleton-dependent intracellular transport by the telluric fungus Fusarium solani. Environ Sci Pollut Res 21:3515–3523

    Article  CAS  Google Scholar 

  • Fedorak PM, Semple KM, Vazquez-Duhalt R, Westlake DWS (1993) Chloroperoxidase-mediated modifications of petroporphyrins and asphaltenes. Enzyme Microb Technol 15:429–437

    Article  CAS  Google Scholar 

  • Furnes B, Schlenk D (2004) Evaluation of xenobiotic N- and S-oxidation by variant flavin containing monooxygenase 1 (FMO1) enzymes. Toxicol Sci 78:196–203

    Article  CAS  Google Scholar 

  • Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    Article  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • Hernández-López EL, Ayala M, Vazquez-Duhalt R (2015a) Microbial and enzymatic biotransformations of asphaltenes. Pet Sci Technol 33:1019–1027

    Article  Google Scholar 

  • Hernández-López EL, Ramírez-Puebla ST, Vazquez-Duhalt R (2015b) Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone. Genomic Data 5:235–237

    Article  Google Scholar 

  • Jauregui J, Valderrama B, Albores A, Vazquez-Duhalt R (2003) Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation 14:397–406

    Article  CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Kasai N, Ikushiro S-I, Shinkyo R, Yasuda K, Hirosue S, Arisawa A, Ichinose H, Wariishi H, Sakaki T (2010) Metabolism of mono- and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Appl Microbiol Biotechnol 86:773–780

    Article  CAS  Google Scholar 

  • Lacotte DJ, Mille G, Acquaviva M, Berttand JC (1996) Arabian light 150 asphaltene biotransformation with n-alkanes as co-substrates. Chemosphere 32:1755–1761

    Article  CAS  Google Scholar 

  • Marín-Spiotta E, Gruley KE, Crawford J, Atkinson EE, Miesel JR, Greene S, Cardona-Correa C, Spencer RGM (2013) Paradigm shift in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117:279–297

    Article  Google Scholar 

  • Masaphy S, Levanon D, Henis Y, Venkateswarlu K, Kelly SL (1996) Evidence for cytochrome P-450 and P-450-mediated benzo(a)pyrene hydroxylation in the white rot fungus Phanerochaete chrysosporium. FEMS Microbiol Lett 135:51–55

    Article  CAS  Google Scholar 

  • Mullins OC (2011) The asphaltenes. Annu Rev Anal Chem 4:393–418

    Article  CAS  Google Scholar 

  • Nakamura T, Ichinose H, Wariishi H (2012) Flavin-containing monooxygenases from Phanerochaete chrysosporium responsible for fungal metabolism of phenolic compounds. Biodegradation 23:343–350

    Article  CAS  Google Scholar 

  • Ning D, Wang H, Ding C, Lu H (2010) Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions. Biodegradation 21:889–901

    Article  CAS  Google Scholar 

  • Pothuluri JV, Freeman JP, Evans FE, Cerniglia CE (1993) Biotransformation of fluorene by the fungus Cunninghamella elegans. Appl Environ Microbiol 59:1977–1980

    CAS  Google Scholar 

  • Rafin C, Potin O, Veignie E, Lounes-Hadj AS, Sancholle M (2000) Degradation of benzo[a]pyrene as sole carbon source by a non white rot fungus, Fusarium solani. Polycycl Aromat Compd 21:311–329

    Article  CAS  Google Scholar 

  • Rontani JF, Bosser-Joulak F, Rambeloarisoa E, Bertrand JC, Giusti G, Faure R (1985) Analytical study of Asthart crude oil asphaltenes biodegradation. Chemosphere 14:1413–1422

    Article  CAS  Google Scholar 

  • Scotti R, Montanari L (1998) Molecular structure and intermolecular interaction of asphaltenes by FT-IR, NMR, EPR. In: Mullins OC, Sheu EY (eds) Structures and dynamics of asphaltenes. Plenum, New York, pp 79–113

    Chapter  Google Scholar 

  • Subramanian V, Yadav JS (2009) Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 75:5570–5580

    Article  CAS  Google Scholar 

  • Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol 9:53–61

    Article  CAS  Google Scholar 

  • Syed K, Doddapaneni H, Subramanian V, Lam YW, Yadav JS (2010) Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem Biophys Res Commun 399:492–497

    Article  CAS  Google Scholar 

  • Syed K, Kattamuri C, Thompson TB, Yadav JS (2011) Cytochrome b5 reductase–cytochrome b5 as an active P450 redox enzyme system in Phanerochaete chrysosporium: atypical properties and in vivo evidence of electron transfer capability to CYP63A2. Arch Biochem Biophys 509:26–32

    Article  CAS  Google Scholar 

  • Syed K, Porollo A, Lam YW, Grimmett PE, Yadava JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702

    Article  CAS  Google Scholar 

  • Thion C, Cébron A, Beguiristain T, Leyval C (2012) PAH biotransformation and sorption by Fusarium solani and Arthrobacter oxydans isolated from a polluted soil in axenic cultures and mixed co-cultures. Int Biodeterior Biodegrad 68:28–35

    Article  CAS  Google Scholar 

  • Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293

    Article  CAS  Google Scholar 

  • Uribe-Alvarez C, Ayala M, Perezgasga L, Naranjo L, Urbina H, Vazquez-Duhalt R (2011) First evidence of mineralization of petroleum asphaltenes by a strain of Neosartorya fischeri. Microb Biotechnol 4:663–672

    Article  CAS  Google Scholar 

  • Vazquez-Duhalt R (1998) Cytochrome c as a biocatalyst. J Mol Catal B Enzym 7:241–249

    Article  Google Scholar 

  • Verdin A, Lounès-Hadj Sahraoui A, Newsam R, Robinson G, Durand R (2005) Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles. Environ Pollut 133:283–291

    Article  CAS  Google Scholar 

  • Wu Y-R, He T-T, Lun J-S, Maskaoui K, Huang T-W, Hu Z (2009) Removal of benzo[a]pyrene by a fungus Aspergillus sp. BAP14. World J Microbiol Biotechnol 25:1395–1401

    Article  CAS  Google Scholar 

  • Yanto DHY, Tachibana S (2013) Biodegradation of petroleum hydrocarbons by a newly isolated Pestalotiopsis sp. NG007. Int Biodeterior Biodegrad 85:438–450

    Article  CAS  Google Scholar 

  • Yanto DHY, Tachibana S (2014) Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil. J Hazard Mater 278:454–463

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Katrin Quester for her technical assistance. We thank to Lorena Chávez González, Simón Guzmán León, José Luis Santillán Torres, and Jorge Ramírez for technical assistance in the microarray determinations. We thank Gerardo Coello, Gustavo Corral and Ana Patricia Gómez for genArise software assistance, and Olga A. Callejas for confocal microscopy. This research was funded by the Mexican Council of Science and Technology (CONACyT)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Vazquez-Duhalt.

Ethics declarations

Funding

This research was funded by the Mexican Council of Science and Technology (SEP-CONACyT 165633).

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-López, E.L., Perezgasga, L., Huerta-Saquero, A. et al. Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri . Environ Sci Pollut Res 23, 10773–10784 (2016). https://doi.org/10.1007/s11356-016-6277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6277-1

Keywords

Navigation