Skip to main content
Log in

Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

An investigation on the toxicological assessment of 10 choline chloride (ChCl)-based deep eutectic solvents (DESs) towards four fungi strains and Cyprinus carpio fish was conducted. ChCl was combined with materials from different chemical groups such as alcohols, sugars, acids and others to form DESs. The study was carried out on the individual DES components, their aqueous mixture before DES formation and their formed DESs. The agar disc diffusion method was followed to investigate their toxicity on four fungi strains selected as a model of eukaryotic microorganisms (Phanerochaete chrysosporium, Aspergillus niger, Lentinus tigrinus and Candida cylindracea). Among these DESs, ChCl:ZnCl2 exhibited the highest inhibition zone diameter towards the tested fungi growth in vitro, followed by the acidic group (malonic acid and p-toluenesulfonic acid). Another study was conducted to test the acute toxicity and determine the lethal concentration at 50 % (LC50) of the same DESs on C. carpio fish. The inhibition range and LC50 of DESs were found to be different from their individual components. DESs were found to be less toxic than their mixture or individual components. The LC50 of ChCl:MADES is much higher than that of ChCl:MAMix. Moreover, the DESs acidic group showed a lower inhibition zone on fungi growth. Thus, DESs should be considered as new components with different physicochemical properties and toxicological profiles, and not merely compositions of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarestrup FM, Hasman H (2004) Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection. Vet Microbiol 100:83–89

    Article  CAS  Google Scholar 

  • Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun :70–71 doi:10.1039/B210714G

  • Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147. doi:10.1021/ja048266j

    Article  CAS  Google Scholar 

  • Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E (2007) Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem 9:868–872. doi:10.1039/B702833D

    Article  CAS  Google Scholar 

  • Abbott AP, Harris RC, Ryder KS, D’Agostino C, Gladden LF, Mantle MD (2011) Glycerol eutectics as sustainable solvent systems. Green Chem 13:82–90. doi:10.1039/C0GC00395F

    Article  CAS  Google Scholar 

  • Abreu C, Sanguinetti M, Amillis S, Ramon A (2010) UreA, the major urea/H+ symporter in Aspergillus nidulans. Fungal Genet Biol 47:1023–1033. doi:10.1016/j.fgb.2010.07.004

    Article  CAS  Google Scholar 

  • Alam MZ, Mansor MF, Jalal KCA (2009) Optimization of decolorization of methylene blue by lignin peroxidase enzyme produced from sewage sludge with Phanerocheate chrysosporium. J Hazard Mater 162:708–715. doi:10.1016/j.jhazmat.2008.05.085

    Article  CAS  Google Scholar 

  • Aydın R, Köprücü K (2005) Acute toxicity of diazinon on the common carp (Cyprinus carpio L.) embryos and larvae. Pestic Biochem Physiol 82:220–225. doi:10.1016/j.pestbp.2005.03.001

    Article  Google Scholar 

  • Azizi N, Dezfuli S, Hahsemi MM (2012) Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction. Sci World J 2012:908702. doi:10.1100/2012/908702

    Google Scholar 

  • Azizullah A, Nasir A, Richter P, Lebert M, Häder D-P (2011) Evaluation of the adverse effects of two commonly used fertilizers, DAP and urea, on motility and orientation of the green flagellate Euglena gracilis. Environ Exp Bot 74:140–150. doi:10.1016/j.envexpbot.2011.05.011

    Article  CAS  Google Scholar 

  • Bansod S, Rai M (2008) Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World J Med Sci 3:81–88

    Google Scholar 

  • Bocarsly ME, Powell ES, Avena NM, Hoebel BG (2010) High-fructose corn syrup causes characteristics of obesity in rats: Increased body weight, body fat and triglyceride levels. Pharmacol Biochem Behav 97:101–106

    Article  CAS  Google Scholar 

  • Bubalo MC, Mazur M, Radošević K, Redovniković IR (2015) Baker’s yeast-mediated asymmetric reduction of ethyl 3-oxobutanoate in deep eutectic solvents. Process Biochem. doi:10.1016/j.procbio.2015.07.015

    Google Scholar 

  • Carriazo D, Serrano MC, Gutierrez MC, Ferrer ML, del Monte F (2012) Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem Soc Rev 41:4996–5014. doi:10.1039/c2cs15353j

    Article  CAS  Google Scholar 

  • Chervova L, Lapshin D (2005) The threshold sensitivity of external chemoreceptor in Carp Cyprinus carpio to amino acids and classical gustatory substances. J Ichthyol 45

  • Cvjetko Bubalo M, Radošević K, Radojčić Redovniković I, Halambek J, Gaurina Srček V (2014) A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf 99:1–12. doi:10.1016/j.ecoenv.2013.10.019

    Article  CAS  Google Scholar 

  • de Almeida MN, Guimarães VM, Falkoski DL, Visser EM, Siqueira GA, Milagres AMF, de Rezende ST (2013) Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae. J Biotechnol 168:71–77. doi:10.1016/j.jbiotec.2013.07.032

    Article  Google Scholar 

  • de Villiers MM, Caira MR, Li J, Strydom SJ, Bourne SA, Liebenberg W (2011) Crystallization of toxic glycol solvates of rifampin from glycerin and propylene glycol contaminated with ethylene glycol or diethylene glycol. Mol Pharm 8:877–888. doi:10.1021/mp100459y

    Article  Google Scholar 

  • Devi GS, Muthu AK, Kumar DS, Rekha S, Indhumathi NR (2009) Studies on the antibacterial and antifungal activities of the ethanolic extracts of Luffa cylindrica (Linn) fruit. Int J Drug Dev Res 1:105–109

    Google Scholar 

  • Doehlemann G, Molitor F, Hahn M (2005) Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Fungal Genet Biol 42:601–610

    Article  CAS  Google Scholar 

  • Durand E, Lecomte J, Baréa B, Piombo G, Dubreucq E, Villeneuve P (2012) Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions. Process Biochem 47:2081–2089. doi:10.1016/j.procbio.2012.07.027

    Article  CAS  Google Scholar 

  • Duranton F, Depner TA, Argilés À (2014) The saga of two centuries of urea: nontoxic toxin or vice versa? Semin Nephrol 34:87–96. doi:10.1016/j.semnephrol.2014.02.002

    Article  CAS  Google Scholar 

  • Falih AM (1997) Influence of heavy-metals toxicity on the growth of Phanerochaete chrysosporium. Bioresour Technol 60:87–90. doi:10.1016/S0960-8524(96)00177-0

    Article  CAS  Google Scholar 

  • Francisco M, van den Bruinhorst A, Kroon MC (2013) Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem 52:3074–3085. doi:10.1002/anie.201207548

    Article  CAS  Google Scholar 

  • Garcia-Arguelles S, Serrano MC, Gutierrez MC, Ferrer ML, Yuste L, Rojo F, del Monte F (2013) Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties. Langmuir 29:9525–9534. doi:10.1021/la401353r

    Article  CAS  Google Scholar 

  • Gauniya A, Das S, Mallick S, Basu S (2010) Comparative bioavailability studies of citric acid and malonic acid based aspirin effervescent tablets. Int J Pharm Bioallied Sci 2:118

    Article  CAS  Google Scholar 

  • Glier MB, Green TJ, Devlin AM (2014) Methyl nutrients, DNA methylation, and cardiovascular disease. Mol Nutr Food Res 58:172–182

    Article  CAS  Google Scholar 

  • Gutierrez MC, Ferrer ML, Yuste L, Rojo F, del Monte F (2010) Bacteria incorporation in deep-eutectic solvents through freeze-drying. Angew Chem 49:2158–2162. doi:10.1002/anie.200905212

    Article  CAS  Google Scholar 

  • Hayyan M, Hashim MA, Al-Saadi MA, Hayyan A, AlNashef IM, Mirghani MES (2013a) Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere 93:455–459. doi:10.1016/j.chemosphere.2013.05.013

    Article  CAS  Google Scholar 

  • Hayyan M, Hashim MA, Hayyan A, Al-Saadi MA, AlNashef IM, Mirghani ME, Saheed OK (2013b) Are deep eutectic solvents benign or toxic? Chemosphere 90:2193–2195. doi:10.1016/j.chemosphere.2012.11.004

    Article  CAS  Google Scholar 

  • Hedayati A (2012) Acute toxicity test of mercuric chloride (Hgcl2), lead chloride (Pbcl2) and zinc sulphate (Znso4) in common carp (Cyprinus carpio). J Clin Toxicol 03 doi:10.4172/2161-0495.1000156

  • Hedayati A, Mohammad Forouhar Vajargah AMY, Safoura Abarghoei, Hajiahmadyan M (2014) Acute toxicity test of pesticide abamectin on common carp (Cyprinus carpio) J Coast Life Med doi:10.12980/jclm.2.201414j44

  • Hernandez F, Ibanez M, Sancho JV (2008) Fast determination of toxic diethylene glycol in toothpaste by ultra-performance liquid chromatography-time of flight mass spectrometry. Anal Bioanal Chem 391:1021–1027. doi:10.1007/s00216-008-2082-0

    Article  CAS  Google Scholar 

  • Huang Z-L, Wu B-P, Wen Q, Yang T-X, Yang Z (2014) Deep eutectic solvents can be viable enzyme activators and stabilizers. J Chem Technol Biotechnol 89:1975–1981. doi:10.1002/jctb.4285

    Article  CAS  Google Scholar 

  • Jamal P, Saheed OK, Abdul Karim MI, Alam MZ, Muyibi SA (2015) A fermentative approach to ameliorating solid waste challenges within food and hospitality industry. Int Biodeterior Biodegrad 102:182–190. doi:10.1016/j.ibiod.2015.03.031

    Article  CAS  Google Scholar 

  • Jhong H-R, Wong DS-H, Wan C-C, Wang Y-Y, Wei T-C (2009) A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells. Electrochem Commun 11:209–211. doi:10.1016/j.elecom.2008.11.001

    Article  CAS  Google Scholar 

  • Kabbashi NA, Mohammed NI, Alam MZ, Mirghani MES (2015) Hydrolysis of Jatropha curcas oil for biodiesel synthesis using immobilized Candida cylindracea lipase. J Mol Catal B Enzym 116:95–100. doi:10.1016/j.molcatb.2015.03.009

    Article  CAS  Google Scholar 

  • Kamble SP, Sawant SB, Pangarkar VG (2007) Heterogeneous photocatalytic degradation of p-toluenesulfonic acid using concentrated solar radiation in slurry photoreactor. J Hazard Mater 140:149–154. doi:10.1016/j.jhazmat.2006.06.064

    Article  CAS  Google Scholar 

  • Kang H-C, Park Y-H, Go S-J (2003) Growth inhibition of a phytopathogenic fungus, Colletotrichum species by acetic acid. Microbiol Res 158:321–326. doi:10.1078/0944-5013-00211

    Article  CAS  Google Scholar 

  • Lannan FM, Mamajanov I, Hud NV (2012) Human telomere sequence DNA in water-free and high-viscosity solvents: G-quadruplex folding governed by Kramers rate theory. J Am Chem Soc 134:15324–15330. doi:10.1021/ja303499m

    Article  CAS  Google Scholar 

  • Mahesh B, Satish S (2008) Antimicrobial activity of some important medicinal plant against plant and human pathogens. World J Agric Sci 4:839–843

    Google Scholar 

  • Malaquias JC, Regesch D, Dale PJ, Steichen M (2014) Tuning the gallium content of metal precursors for Cu(In, Ga)Se2 thin film solar cells by electrodeposition from a deep eutectic solvent. Phys Chem Chem Phys 16:2561–2567. doi:10.1039/c3cp54509a

    Article  CAS  Google Scholar 

  • Mondal D, Bhatt J, Sharma M, Chatterjee S, Prasad K (2014) A facile approach to prepare a dual functionalized DNA based material in a bio-deep eutectic solvent. Chem Commun (Camb) 50:3989–3992. doi:10.1039/c4cc00145a

    Article  CAS  Google Scholar 

  • Monhemi H, Housaindokht MR, Moosavi-Movahedi AA, Bozorgmehr MR (2014) How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of Candida antarctica lipase B in urea: choline chloride deep eutectic solvent. Phys Chem Chem Phys 16:14882–14893. doi:10.1039/c4cp00503a

    Article  CAS  Google Scholar 

  • Morrison HG, Sun CC, Neervannan S (2009) Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int J Pharm 378:136–139. doi:10.1016/j.ijpharm.2009.05.039

    Article  CAS  Google Scholar 

  • Nagpal R, Puniya AK, Sehgal JP, Singh K (2012) Survival of anaerobic fungus Caecomyces sp. in various preservation methods: a comparative study. Mycoscience 53:427–432. doi:10.1007/S10267-012-0187-Y

    Article  Google Scholar 

  • Nelson JS (2006) Fishes of the world. Wiley

  • Ní Shúilleabháin S, Mothersill C, Sheehan D, O’Brien NM, O’ Halloran J, Van Pelt FNAM, Davoren M (2004) In vitro cytotoxicity testing of three zinc metal salts using established fish cell lines. Toxicol in Vitro 18:365–376. doi:10.1016/j.tiv.2003.10.006

    Article  Google Scholar 

  • Oh JH, Lee JS (2014) Synthesis of gold microstructures with surface nanoroughness using a deep eutectic solvent for catalytic and diagnostic applications. J Nanosci Nanotechnol 14:3753–3757

    Article  CAS  Google Scholar 

  • Okafor JI, Ngwogu A (1999) In vitro effects of three metallic salts and soot on the growth of five species of the dermatophytes. J Commun Dis 31:165–168

    CAS  Google Scholar 

  • Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) Natural deep eutectic solvents – solvents for the 21st century. AACS Sustainable Chem Eng:140326084746009 doi:10.1021/sc500096j

  • Palanichamy S, Arunachalam S, Balasubramanian MP (1985) Food consumption of Sarotherodon mossambicus (Trewaves) exposed to sublethal concentration of diammonium phosphate. Hydrobiologia 128:233–237. doi:10.1007/BF00006819

    Article  CAS  Google Scholar 

  • Palanivelu V, Vijayavel K, Ezhilarasibalasubramanian S, Balasubramanian MP (2005) Impact of fertilizer (urea) on oxygen consumption and feeding energetics in the fresh water fish Oreochromis mossambicus. Environ Toxicol Pharmacol 19:351–355. doi:10.1016/j.etap.2004.09.001

    Article  CAS  Google Scholar 

  • Park J-S et al (2013) Synthesis and characterization of zinc chloride containing poly (acrylic acid) hydrogel by gamma irradiation. Radiat Phys Chem 88:60–64

    Article  CAS  Google Scholar 

  • Passino DRM, Smith SB (1987) Acute bioassays and hazard evaluation of representative contaminants detected in great lakes fish. Environ Toxicol Chem 6:901–907. doi:10.1002/etc.5620061111

    Article  CAS  Google Scholar 

  • Petkovic M et al (2009) Exploring fungal activity in the presence of ionic liquids. Green Chem 11:889–894. doi:10.1039/B823225C

    Article  CAS  Google Scholar 

  • Pollet BG, Hihn J-Y, Mason TJ (2008) Sono-electrodeposition (20 and 850 kHz) of copper in aqueous and deep eutectic solvents. Electrochim Acta 53:4248–4256. doi:10.1016/j.electacta.2007.12.059

    Article  CAS  Google Scholar 

  • Pretti C, Chiappe C, Pieraccini D, Gregori M, Abramo F, Monni G, Intorre L (2006) Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem 8:238–240. doi:10.1039/B511554J

    Article  CAS  Google Scholar 

  • Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L (2009) Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol Environ Saf 72:1170–1176. doi:10.1016/j.ecoenv.2008.09.010

    Article  CAS  Google Scholar 

  • Radošević K, Cvjetko Bubalo M, Gaurina Srček V, Grgas D, Landeka Dragičević T, Radojčić Redovniković I (2015) Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol Environ Saf 112:46–53. doi:10.1016/j.ecoenv.2014.09.034

    Article  Google Scholar 

  • Raghuwanshi VS, Ochmann M, Polzer F, Hoell A, Rademann K (2014) Self-assembly of gold nanoparticles on deep eutectic solvent (DES) surfaces. Chem Commun 50:8693–8696. doi:10.1039/c4cc02588a

    Article  CAS  Google Scholar 

  • Ramesh S, Shanti R, Morris E (2012) Studies on the plasticization efficiency of deep eutectic solvent in suppressing the crystallinity of corn starch based polymer electrolytes. Carbohydr Polym 87:701–706. doi:10.1016/j.carbpol.2011.08.047

    Article  CAS  Google Scholar 

  • Sakurada M, Tsuzuki Y, Morgavi DP, Tomita Y, Onodera R (1995) Simple method for cryopreservation of an anaerobic rumen fungus using ethylene glycol and rumen fluid. FEMS Microbiol Lett 127:171–174. doi:10.1016/0378-1097(95)00056-B

    Article  CAS  Google Scholar 

  • Salihu A, Bala M, Alam MZ (2015) Lipase production by Aspergillus niger using sheanut cake: an optimization study. J Taibah Uni Sci. doi:10.1016/j.jtusci.2015.02.011

    Google Scholar 

  • Sanap AK, Shankarling GS (2014) Eco-friendly and recyclable media for rapid synthesis of tricyanovinylated aromatics using biocatalyst and deep eutectic solvent. Catal Commun 49:58–62. doi:10.1016/j.catcom.2014.01.031

    Article  CAS  Google Scholar 

  • Serrano MC, Gutierrez MC, Jimenez R, Ferrer ML, del Monte F (2012) Synthesis of novel lidocaine-releasing poly(diol-co-citrate) elastomers by using deep eutectic solvents. Chem Commun 48:579–581. doi:10.1039/c1cc15284j

    Article  CAS  Google Scholar 

  • Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2011) Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Sep Purif Technol 81:216–222. doi:10.1016/j.seppur.2011.07.032

    Article  CAS  Google Scholar 

  • Silva SNRL, Farias CBB, Rufino RD, Luna JM, Sarubbo LA (2010) Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf B: Biointerfaces 79:174–183. doi:10.1016/j.colsurfb.2010.03.050

    Article  CAS  Google Scholar 

  • Singh D, Chen S (2008) The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol 81:399–417. doi:10.1007/s00253-008-1706-9

    Article  CAS  Google Scholar 

  • Singh RN, Pandey RK, Singh NN, Das VK (2009) Acute toxicity and behavioral responses of common carp Cyprinus carpio (Linn.) to an organophosphate (Dimethoate) World. J Zool 4:70–75

    Google Scholar 

  • Singh BS, Lobo HR, Shankarling GS (2012) Choline chloride based eutectic solvents: magical catalytic system for carbon–carbon bond formation in the rapid synthesis of β-hydroxy functionalized derivatives. Catal Commun 24:70–74. doi:10.1016/j.catcom.2012.03.021

    Article  CAS  Google Scholar 

  • Singh BS, Lobo HR, Pinjari DV, Jarag KJ, Pandit AB, Shankarling GS (2013) Ultrasound and deep eutectic solvent (DES): a novel blend of techniques for rapid and energy efficient synthesis of oxazoles. Ultrason Sonochem 20:287–293. doi:10.1016/j.ultsonch.2012.06.003

    Article  CAS  Google Scholar 

  • Skidmore J (1964) Toxicity of zinc compounds to aquatic animals, with special reference to fish. Q Rev Biol :227–248

  • Staples CA, Williams JB, Craig GR, Roberts KM (2001) Fate, effects and potential environmental risks of ethylene glycol: a review. Chemosphere 43:377–383. doi:10.1016/S0045-6535(00)00148-X

    Article  CAS  Google Scholar 

  • Stratford M, Plumridge A, Nebe-von-Caron G, Archer DB (2009) Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory. Int J Food Microbiol 136:37–43. doi:10.1016/j.ijfoodmicro.2009.09.025

    Article  CAS  Google Scholar 

  • Tang B, Row KH (2013) Recent developments in deep eutectic solvents in chemical sciences. Chem Mon 144:1427–1454. doi:10.1007/s00706-013-1050-3

    Article  CAS  Google Scholar 

  • Tang B, Park HE, Row KH (2014) Preparation of chlorocholine chloride/urea deep eutectic solvent-modified silica and an examination of the ion exchange properties of modified silica as a Lewis adduct. Anal Bioanal Chem 406:4309–4313. doi:10.1007/s00216-014-7817-5

    Article  CAS  Google Scholar 

  • Ulfig K (2007) Influence of peptone, ammonia water and urea supplements on keratinolytic and associated non-keratinolytic fungi in sewage sludge. Int Biodeterior Biodegrad 59:62–68. doi:10.1016/j.ibiod.2006.06.016

    Article  CAS  Google Scholar 

  • Ventura SPM, Marques CS, Rosatella AA, Afonso CAM, Gonçalves F, Coutinho JAP (2012) Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria. Ecotoxicol Environ Saf 76:162–168. doi:10.1016/j.ecoenv.2011.10.006

    Article  CAS  Google Scholar 

  • Vidal C, Suárez FJ, García-Álvarez J (2014) Deep eutectic solvents (DES) as green reaction media for the redox isomerization of allylic alcohols into carbonyl compounds catalyzed by the ruthenium complex [Ru(η3:η3-C10H16)Cl2(benzimidazole)]. Catal Commun 44:76–79. doi:10.1016/j.catcom.2013.04.002

    Article  CAS  Google Scholar 

  • Wen Q, Chen J-X, Tang Y-L, Wang J, Yang Z (2015) Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 132:63–69. doi:10.1016/j.chemosphere.2015.02.061

    Article  CAS  Google Scholar 

  • Wu S-H, Caparanga AR, Leron RB, Li M-H (2012) Vapor pressure of aqueous choline chloride-based deep eutectic solvents (ethaline, glyceline, maline and reline) at 30–70 °C. Thermochim Acta 544:1–5. doi:10.1016/j.tca.2012.05.031

    Article  CAS  Google Scholar 

  • Zablotowicz RM, Hoagland RE, Staddon WJ, Locke MA (2000) Effects of pH on chemical stability and de-esterification of fenoxaprop-ethyl by purified enzymes, bacterial extracts, and soils. J Agric Food Chem 48:4711–4716. doi:10.1021/jf991062f

    Article  CAS  Google Scholar 

  • Zeng Q, Wang Y, Huang Y, Ding X, Chen J, Xu K (2014) Deep eutectic solvents as novel extraction media for protein partitioning. Analyst. doi:10.1039/C3AN02235H

    Google Scholar 

  • Zhang Q, De Oliveira VK, Royer S, Jerome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146. doi:10.1039/c2cs35178a

    Article  CAS  Google Scholar 

  • Zhang C, Jia Y, Jing Y, Wang H, Hong K (2014) Main chemical species and molecular structure of deep eutectic solvent studied by experiments with DFT calculation: a case of choline chloride and magnesium chloride hexahydrate. J Mol Model 20:2374. doi:10.1007/s00894-014-2374-6

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the University of Malaya HIR-MOHE (D000003-16001), UMRG (RP037B-15AET) and the Centre for Ionic Liquids (UMCiL) for their support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maan Hayyan.

Additional information

Responsible editor: Markus Hecker

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table A1

(DOC 30 kb)

Table A2

(DOC 89 kb)

Table A3

(DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juneidi, I., Hayyan, M. & Mohd Ali, O. Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish. Environ Sci Pollut Res 23, 7648–7659 (2016). https://doi.org/10.1007/s11356-015-6003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-6003-4

Keywords

Navigation