Skip to main content
Log in

Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sorption and desorption of heavy metals (Cd, Cu, Pb, and Zn) was evaluated in biochars derived from sugarcane bagasse (SB), eucalyptus forest residues (CE), castor meal (CM), green coconut pericarp (PC), and water hyacinth (WH) as candidate materials for the treatment of contaminated waters and soils. Solid–liquid distribution coefficients depended strongly on the initial metal concentration, with K d,max values mostly within the range 103–104 L kg−1. For all biochars, up to 95 % removal of all the target metals from water was achieved. The WH biochar showed the highest K d,max values for all the metals, especially Cd and Zn, followed by CE (for Cd and Pb) and PC (for Cd, Pb, and Zn). Sorption data were fitted satisfactorily with Freundlich and linear models (in the latter case, for the low concentration range). The sorption appeared to be controlled by cationic exchange, together with specific surface complexation at low metal concentrations. The low desorption yields, generally less than 5 %, confirmed that the sorption process was largely irreversible and that the biochars could potentially be used in decontamination applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Fattah TM, Mahmoud ME, Ahmed SB, Huff MD, Lee JW, Kumar S (2015) Biochar from woody biomass for removing metal contaminants and carbon sequestration. J Ind Eng Chem 22:103–109

    Article  CAS  Google Scholar 

  • Ahmad M, Usman ARA, Lee SS, Kim SC, Joo JH, Yang JE, Ok YS (2012) Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu+2 from aqueous solutions. J Ind Eng Chem 18:198–204. doi:10.1016/j.jiec.2011.11.013

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. doi:10.1016/j.chemosphere.2013.10.071

    Article  CAS  Google Scholar 

  • Bergier I, Salis SM, Miranda CHB, Ortega E, Luengo CA (2012) Biofuel production from water hyacinth in the Pantanal wetland. Ecohydrol Hydrobiol 12:77–84. doi:10.2478/v10104-011-0041-4

    Article  CAS  Google Scholar 

  • Bogusz A, Oleszczuk P, Dobrowolski R (2015) Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresour Technol 196:540–549. doi:10.1016/j.biortech.2015.08.006

    Article  CAS  Google Scholar 

  • Cao X, Ma L, Liang Y, Cao B, Harris W (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45:4884–4889. doi:10.1021/es103752u

    Article  CAS  Google Scholar 

  • Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884. doi:10.1016/j.biortech.2011.06.078

    Article  CAS  Google Scholar 

  • Christensen JB, Botma JJ, Christensen TH (1999) Complexation of Cu and Pb by DOC in polluted groundwater: a comparison of experimental data and predictions by computer speciation MODELS (WHAM and MINTEQA2). Water Res 33:3231–3238. doi:10.1016/S0043-1354(99)00020-2

    Article  CAS  Google Scholar 

  • Coles CA, Yong RN (2006) Use of equilibrium and initial metal concentrations in determining Freundlich isotherms for soils and sediments. Eng Geol 85:19–25. doi:10.1016/j.enggeo.2005.09.023

    Article  Google Scholar 

  • Ding W, Dong X, Ime IM, Ma LQ (2014) Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105:68–74. doi:10.1016/j.chemosphere.2013.12.042

    Article  CAS  Google Scholar 

  • Essington M (2004) Soil and water chemistry: an integrative approach. CRC Press LLC, London

    Google Scholar 

  • Fiol N, Villaescusa I, Martínez M, Miralles N, Poch J, Serarols J (2006) Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep Purif Technol 50:132–140. doi:10.1016/j.seppur.2005.11.016

    Article  CAS  Google Scholar 

  • Frišták V, Pipíška M, Lesný J, Soja G, Friesl-Hanl W, Packová A (2015) Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: comparative study. Environ Monit Assess 187:1–16. doi:10.1007/s10661-014-4093-y

    Article  CAS  Google Scholar 

  • Gell K, van Groenigen J, Cayuela ML (2011) Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity. J Hazard Mater 186:2017–2025. doi:10.1016/j.jhazmat.2010.12.105

    Article  CAS  Google Scholar 

  • Guo G, Zhou Q, Ma L (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116:513–528. doi:10.1007/s10661-006-7668-4

    Article  CAS  Google Scholar 

  • Han Y, Boateng AA, Qi PX, Lima IM, Chang J (2013) Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. J Environ Manag 118:196–204. doi:10.1016/j.jenvman.2013.01.001

    Article  CAS  Google Scholar 

  • Hinz C (2001) Description of sorption data with isotherm equations. Geoderma 99:225–243. doi:10.1016/S0016-7061(00)00071-9

    Article  CAS  Google Scholar 

  • IBÁ (2015) Brazilian Tree Industry. http://www.iba.org/en/ (accessed July 2015)

  • IBGE (2015) Systematic Survey of Agricultural Production. Brazilian Institute of Geography and Statistics. http://www.ibge.gov.br. (accessed July 2015)

  • Inyang M, Gao B, Yao Y, Xue Y, Zimmerman AR, Pullammanappallil P, Cao X (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56. doi:10.1016/j.biortech.2012.01.072

    Article  CAS  Google Scholar 

  • Khokhotva O, Waara S (2010) The influence of dissolved organic carbon on sorption of heavy metals on urea-treated pine bark. J Hazard Mater 173:689–696. doi:10.1016/j.jhazmat.2009.08.149

    Article  CAS  Google Scholar 

  • Kim MS, Min HG, Koo N, Park J, Lee SH, Bak GI, Kim JG (2014) The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments. J Environ Manag 146:124–130. doi:10.1016/j.jenvman.2014.07.001

    Article  CAS  Google Scholar 

  • Kołodyńska D, Wnetrzak R, Leahy JJ, Hayes MHB, Kwapinski W, Hubicki Z (2012) Kinetic and adsorptive characterization of biochar in metal ions removal. Chem Eng J 197:295–305. doi:10.1016/j.cej.2012.05.025

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Glob Chang 11:403–427. doi:10.1007/s11027-005-9006-5

    Article  Google Scholar 

  • Mohan D, Pittman CU, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Gómez-Serrano V, Gong H (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310:57–73. doi:10.1016/j.jcis.2007.01.020

    Article  CAS  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202. doi:10.1016/j.biortech.2014.01.120

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207. doi:10.1016/S0013-7952(00)00101-0

    Article  Google Scholar 

  • Pellera F-M, Giannis A, Kalderis D, Anastasiadou K, Stegmann R, Wang JY, Gidarakos E (2012) Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products. J Environ Manag 96:35–42. doi:10.1016/j.jenvman.2011.10.010

    Article  CAS  Google Scholar 

  • Regmi P, Garcia Moscoso JL, Kumar S, Cao X, Mao J, Schafran G (2012) Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manag 109:61–69. doi:10.1016/j.jenvman.2012.04.047

    Article  CAS  Google Scholar 

  • Sastre J, Rauret G, Vidal M (2007) Sorption–desorption tests to assess the risk derived from metal contamination in mineral and organic soils. Environ Int 33:246–256. doi:10.1016/j.envint.2006.09.017

    Article  CAS  Google Scholar 

  • Shaheen SM, Eissa FI, Ghanem KM, Gamal El-Din HM, Al Anany FS (2013) Heavy metals removal from aqueous solutions and wastewaters by using various byproducts. J Environ Manag 128:514–521. doi:10.1016/j.jenvman.2013.05.061

    Article  CAS  Google Scholar 

  • Silva JCJS, Ciminelli VST (2009) Tratamiento de las muestras de agua, suelos y sedimentos para determinación de arsénico. In: Litter MI, Armienta MA (eds) IBEROARSEN Metodologías Analíticas para la Determinación y Especiación de Arsénico en Aguas y Suelos, 1st edn. CYTED, Argentina, p 242

    Google Scholar 

  • Tong X, Li J, Yuan J, Xu R (2011) Adsorption of Cu(II) by biochars generated from three crop straws. Chem Eng J 172:828–834. doi:10.1016/j.cej.2011.06.069

    Article  CAS  Google Scholar 

  • Trakal L, Sigut R, Sillerová H, Faturíková D, Komárek M (2014) Copper removal from aqueous solution using biochar: effect of chemical activation. Arab J Chem 7:43–52. doi:10.1016/j.arabjc.2013.08.001

    Article  CAS  Google Scholar 

  • U.S. EPA—The United States Environmental Protection Agency (2011) Ground water and drinking water, current drinking water standards, EPA 816-F-02. U.S. EPA

  • Venegas A, Rigol A, Vidal M (2015) Viability of organic wastes and biochars as amendments for the remediation of heavy metal-contaminated soils. Chemosphere 119:190–198. doi:10.1016/j.chemosphere.2014.06.009

    Article  CAS  Google Scholar 

  • Wang Z, Liu G, Zheng H, Li F, Ngo HH, Guo W, Liu C, Chen L, Xing B (2015a) Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour Technol 177:308–317. doi:10.1016/j.biortech.2014.11.077

    Article  CAS  Google Scholar 

  • Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW (2015b) Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere 134:257–262. doi:10.1016/j.chemosphere.2015.04.062

    Article  CAS  Google Scholar 

  • Zhang F, Wang X, Yin D, Peng B, Tan C, Liu Y, Tan X, Wu S (2015) Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J Environ Manag 153:68–73. doi:10.1016/j.jenvman.2015.01.043

    Article  CAS  Google Scholar 

  • Zhao L, Cao X, Mašek O, Zimmerman A (2013) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 257:1–9. doi:10.1016/j.jhazmat.2013.04.015

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish Ministerio de Economía y Competitividad (Project CTM2011-27211 and CTM2014-55191) and the Generalitat de Catalunya (AGAUR 2014SGR1277). The authors are indebted to CNPq and CAPES for a doctorate scholarship (MED) and research scholarships (JBA, ASM, AWJ, and EHN).

The authors wish to thank Melhoramentos S.A. for supplying the sugar cane bagasse and Granfor for supplying the eucalyptus forest residues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rigol.

Additional information

Responsible editor: Hailong Wang

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doumer, M.E., Rigol, A., Vidal, M. et al. Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars. Environ Sci Pollut Res 23, 2684–2692 (2016). https://doi.org/10.1007/s11356-015-5486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5486-3

Keywords

Navigation