Skip to main content
Log in

Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aeromonas veronii GRI (KF964486), isolated from acclimated textile effluent after selective enrichment on azo dye, was assessed for methyl orange biodegradation potency. Results suggested the potential of this bacterium for use in effective treatment of azo-dye-contaminated wastewaters under static conditions at neutral and alkaline pH value, characteristic of typical textile effluents. The strain could tolerate higher doses of dyes as it was able to decolorize up to 1000 mg/l. When used as microbial surfactant to enhance methyl orange biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized slightly the decolorization efficiency at an optimal concentration of about 0.025 %. In order to enhance the process efficiency, a Taguchi design was conducted. Phytotoxicity bioassay using sesame and radish seeds were carried out to assess the biotreatment effectiveness. The bacterium was able to effectively decolorize the azo dye when inoculated with an initial optical density of about 0.5 with 0.25 % sucrose, 0.125 % yeast extract, 0.01 % SPB1 biosurfactant, and when conducting an agitation phase of about 24 h after static incubation. Germination potency showed an increase toward the nonoptimized conditions indicating an improvement of the biotreatment. When comparing with synthetic surfactants, a drastic decrease and an inhibition of orange methyl decolorization were observed in the presence of CTAB and SDS. The nonionic surfactant Tween 80 had a positive effect on methyl orange biodecolorization. Also, studies ensured that methyl orange removal by this strain could be due to endocellular enzymatic activities. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing effective decolorization period, biosurfactant stimulated bacterial decolorization method may provide highly efficient, inexpensive, and time-saving procedure in treatment of textile effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gubitz GM (2000) Decolourization and detoxification of textile dyes with a laccase from Trametes hirsute. Appl Environ Microbiol 66:3357–3362

    Article  CAS  Google Scholar 

  • Adedayo O, Javadpour S, Taylor C, Anderson WA, Moo-Young M (2004) Decolourization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant. World J Microbiol Biotechnol 20:545–550

    Article  CAS  Google Scholar 

  • An S-Y, Min S-K, Cha I-H, Choi Y-L, Cho Y-S, Kim C-H, Lee Y-C (2002) Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnol Lett 24:1037–1040

    Article  CAS  Google Scholar 

  • Arun Prasad AS, Bhaskara Rao KV (2012) Aerobic biodegradation of Azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4492-3

    Google Scholar 

  • Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SMM (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98:2082–2088

    Article  CAS  Google Scholar 

  • Ayed L, Khelifi E, Ben Jannet H, Miladi H, Cheref A, Achour S, Bakhrouf A (2010) Response surface methodology for decolorization of azo dye methyl orange by bacterial consortium: produced enzymes and metabolites characterization. Chem Eng J 165:200–208

    Article  CAS  Google Scholar 

  • Ayed L, Mahdhi A, Cheref A, Bakhrouf A (2011) Decolorization and degradation of azo dye methyl red by an isolated Sphingomonas paucimobilis: biotoxicity and metabolites characterization. Desalination 274:272–277

    Article  CAS  Google Scholar 

  • Bautista FL, Sanz R, Molina MC, Gonzalez N, Sanchez D (2009) Effect of different non-ionic surfactants on the biodegradation of PAHs by diverse aerobic bacteria. Int Biodeterior Biodegrad 63:913–922

    Article  CAS  Google Scholar 

  • Ben Mansour H, Boughzala O, Dridi D, Barillier D, Chekir-Ghedira L, Mosrati R (2011a) Les colorants textiles sources de contamination de l’eau : criblage de la toxicité et des méthodes de traitement. J Water Sci 24(3):209–238

    CAS  Google Scholar 

  • Ben Mansour H, Mechri B, Ayed-Ajmi Y, Ghedira K, Barillier D, Hammami M, Mosrati R, Chekir L (2011b) Treatment of Olive Mill wastewaters by Pseudomonas putida mt-2: toxicity assessment of the untreated and treated effluent. Environ Eng Sci 28(12):835–841

    Article  CAS  Google Scholar 

  • Ben Mansour H, Mosrati R, Ghedira K, Chekir L (2011c) Decolorization of textiles finishing wastewater by Pseudomonas putida: toxicity assessment. Environ Eng Sci. doi:10.1089/ees.2010.0225

    Google Scholar 

  • Ben Mansour H, Dellai A, Ayed Y (2012) Toxicities effects of pharmaceutical, olive mill and textile wastewaters before and after degradation by Pseudomonas putida mt-2. Cancer Cell Int 12(4):1–4

    Google Scholar 

  • Bhatt N, Patel KC, Keharia H, Madamwar D (2005) Decolorization of diazo-dye Reactive Blue 172 by Pseudomonas aeruginosa NBAR12. J Basic Microbiol 45:407–418

    Article  CAS  Google Scholar 

  • Carmen Z, Daniela S (2012) Textile organic dyes – characteristics, polluting effects and separation/elimination procedures from industrial effluents – a critical overview. organic pollutants ten years after the stockholm convention - environmental and analytical update, Dr. Tomasz Puzyn (Ed.), ISBN: 978-953-307-917-2, In Tech

  • Champagne P-P, Nesheim ME, Ramsay JA (2010) Effect of a non-ionic surfactant, Merpol, on dye decolorization of Reactive blue 19 by laccase. Enzym Microb Technol 46:147–152

    Article  CAS  Google Scholar 

  • Chou DK, Krishnamurthy R, Randolph TW, Carpenter JF, Manning MC (2005) Effects of Tween 20 and Tween 80 on the stability of Albutropin during agitation. J Pharm Sci 94(6):1368–1381

    Article  CAS  Google Scholar 

  • Das SK, Shome I, Guha AK (2012) Biotechnological potential of soil isolate, Flavobacterium mizutaii for removal of azo dyes: kinetics, isotherm, and microscopic study. Sep Sci Technol 47:1913–1925

    Article  CAS  Google Scholar 

  • Dawkar VV, Jadhav UU, Jadhav SU, Govindwar SP (2008) Biodegradation of disperse textile dye Brown 3REL by newly isolated Bacillus sp VUS. J Appl Microbiol 105:14–24

    Article  CAS  Google Scholar 

  • Dayeh VR, Chow SL, Schirmer K, Bols NC (2004) Evaluating the toxicity of Triton X-100 to protozoan, fish, and mammalian cells using fluorescent dyes as indicators of cell viability. Ecotoxicol Environ Saf 57:375–382

    Article  CAS  Google Scholar 

  • Erden E, Kaymaz Y, Pazarlioglu NK (2011) Biosorption kinetics of a direct azo dye Sirius Blue K-CFN by Trametes versicolor. Elect J Biotechnol 14 (2)

  • Franciscon E, Grossman MJ, Rizzato Paschoal JA, Reyes Reyes FG, Durrant LR (2012) Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. Springer Plus 1:2–10

    Article  CAS  Google Scholar 

  • Ghodake G, Jadhav U, Tamboli D, Kagalkar A, Govindwar S (2011) Decolorization of textile dyes and degradation of mono-azo dye Amaranth by Acinetobacter calcoaceticus NCIM 2890. Indian J Microbiol 51:501–508

    Article  CAS  Google Scholar 

  • Ghribi D, Abdelkefi-Mesrati L, Mnif I, Kammoun R, Ayadi I, Saadaoui I, Maktouf S, Chaabouni-Ellouze S (2012) Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. J Biomed Biotechnol. doi:10.1155/2012/373682

    Google Scholar 

  • Gopalakrishnan R, Sellappa S (2011) Decolourisation of methyl orange and methyl red by live and dead biomass of fungi. Asian J Exp Biol Sci 2(4):569–574

    CAS  Google Scholar 

  • Gopinath SM, Kalleshappa TK, Narasimhamurthy TP, Ashwinipathil GM (2013) Isolation and screening of fungi for decolourization of azo dye. Int J Res Sci Technol 2(2):95–97

    Google Scholar 

  • Gul UD, Donmez G (2010) Effect of a cationic surfactant on dye biosorption properties of Aspergillus versicolor, Communications de la Faculté des Sciences de l'Université d'Ankara, Séries C 22:1–13

  • Gul UD, Donmez G (2011) Effect of surfactants on Remazol Blue bioremoval capacity of Rhizopus Arrhizus strain growing in molasses medium. Fresenius Environ Bull 20:2677–2683

    CAS  Google Scholar 

  • Gül UD, Dönmez G (2012) Effects of dodecyl trimethyl ammonium bromide surfactant on decolorization of Remazol Blue by a living Aspergillus versicolor strain. J Surfactant Deterg 15:797–803

    Article  CAS  Google Scholar 

  • Hadibarata T, Adnan LA, MohdYusoff AR, Yuniarto A, Meor R, Ahmad Zubir MF, Khudhair AB, Teh ZC, Naser MA (2013) Microbial decolorization of an azo dye reactive black 5 using white-rot fungus Pleurotus eryngii F032. Water Air Soil Pollut 224:1595

    Article  CAS  Google Scholar 

  • Hakimelahi M, Moghaddam MRA, Hashemi SH (2012) Biological treatment of wastewater containing an azo dye using mixed culture on alternating anaerobic/aerobic sequencing batch reactors. Biotechnol Bioprocess Eng 17:875–880

    Article  CAS  Google Scholar 

  • Hayasen N, Kouno K, Ushio K (2000) Isolation and characterization of Aeromonas sp. B-5 capable of decolorizing various dyes. J Biosci Bioeng 90:570–573

    Article  Google Scholar 

  • Helle SS, Duff JBS, Cooper DG (1993) Effect of surfactants on cellulosehydrolysis. Biotechnol Bioeng 42:611–617

    Article  CAS  Google Scholar 

  • Hsueh C-C, Chen B-Y, Yen C-Y (2009) Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila. J Hazard Mater 167:995–1001

    Article  CAS  Google Scholar 

  • Jadhav DJP, Parshetti GK, Kalme SD, Govindwar SP (2007) Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463. Chemosphere 68:394–400

    Article  CAS  Google Scholar 

  • Jadhav M, Kalme S, Tamboli D, Govindwar S (2011) Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J Basic Microbiol 51:385–396

    Article  CAS  Google Scholar 

  • Ji G, Zhang H, Huang F, Huang X (2009) Effects of nonionic surfactant Triton X-100 on the laccase-catalyzed conversion of bisphenol A. J Environ Sci 21:1486–1490

    Article  CAS  Google Scholar 

  • Joshi T, Iyengar I, Singh K, Garg S (2008) Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes. Bioresour Technol 99:7115–7121

    Article  CAS  Google Scholar 

  • Junnarkar N, Srinivas Murty D, Bhatt NS, Madamwar D (2006) Decolorization of diazo dye Direct Red 81 by a novel bacterial consortium. World J Microbiol Biotechnol 22:163–168

    Article  CAS  Google Scholar 

  • Kalme SD, Parshetti GK, Jadhav SU, Govindwar SP (2007) Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour Technol 98:1405–1410

    Article  CAS  Google Scholar 

  • Kang SW, Kim YB, Shin JD, Kim EK (2010) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl Biochem Biotechnol 160:780–790

    Article  CAS  Google Scholar 

  • Kapadia Sanket G, Yagnik BN (2013) Current trend and potential for microbial biosurfactants. Asian J Exp Biol Sci 4:1–8

    Google Scholar 

  • Kristensen JB, Borjesson J, Bruun MH, Tjerneld F, Jørgensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzym Microb Technol 40:888–895

    Article  CAS  Google Scholar 

  • Kumar Praveen GN, Sumangala KB (2012) Fungal degradation of azo dye- red 3bn and optimization of physico-chemical parameters. J Biol Sci 1(2):17–24

    Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093

    Google Scholar 

  • Lade SH, Waghmode TR, Kadam AA, Govindwar SP (2012) Enhanced biodegradation and detoxification of disperse azo dye rubine gfl and textile industry effluent by defined fungal-bacterial consortium. Int Biodeterior Biodegrad 72:94–107

    Article  CAS  Google Scholar 

  • Liang Y-S, Yuan X-Z, Zeng G-M, Hu C-L, Zhong H, Huang D-L, Tang L, Zhao J-J (2010) Biodelignification of rice straw by Phanerochaete chrysosporium in the presence of dirhamnolipid. Biodegradation. doi:10.1007/s10532-010-9329-0

    Google Scholar 

  • Liu J, Yuan X, Zeng G, Shi J, Chen S (2006) Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochem 41:2347–2351

    Article  CAS  Google Scholar 

  • Liu X-L, Zeng G-M, Tang L, Zhong H, Wang R-Y, Fu H-Y, Liu Z-F, H-l H, Zhang J-C (2008) Effects of dirhamnolipid and SDS on enzyme production by Phanerochaete chrysosporium in submerged fermentation. Process Biochem 43:1300–1303

    Article  CAS  Google Scholar 

  • Liu Z-F, Zeng G-M, Zhong H, Yuan X-Z, Fu H-Y, Zhou M-F, Ma X-L, Li H, Li J-B (2012) Effect of dirhamnolipid on the removal of phenol catalyzed by laccase in aqueous solution. World J Microbiol Biotechnol 28:175–181

    Article  CAS  Google Scholar 

  • Mnif I, Ghribi D (2015) Lipopeptides biosurfactants main classes and new insights for industrial; biomedical and environmental applications. Biopolymers: Pept Sci. doi:10.1002/bip.22630

    Google Scholar 

  • Mnif I, Ellouze-Chaabouni S, Ghribi D (2012a) Response surface methodological approach to optimize the nutritional parameters for enhanced production of lipopeptide biosurfactant in submerged culture by B. subtilis SPB1. J Adv Sci Res 3(1):87–94

    CAS  Google Scholar 

  • Mnif I, Ellouze-Chaabouni S, Ghribi D (2012b) Economic production of Bacillus subtilis SPB1 biosurfactant using local agro-industrial wastes and its application in enhancing solubility of diesel. J Chem Technol Biotechnol 88(5):779–787

    Article  CAS  Google Scholar 

  • Mnif I, Sahnoun R, Ellouze-Chaabouni S, Ghribi D (2013) Evaluation of B. subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design. Environ Sci Pollut Res. doi:10.1007/s11356-013-1894-4

    Google Scholar 

  • Mnif I, Ayedi Y, Ellouze-Chaabouni S, Ghribi D (2014) Treatment of diesel- and kerosene-contaminated water by B. subtilis SPB1 biosurfactant-producing strain. Water Environ Res 86(8):707–716

    Article  CAS  Google Scholar 

  • Mnif I, Mnif S, Sahnoun R, Ayedi Y, Ellouze-Chaabouni S, Ghribi D (2015) Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Env Sci Pollut Res

  • Moosvi S, Keharia H, Madamwar D (2005) Decolourization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM 11.1. World J Microbiol Biotechnol 21:667–672

    Article  CAS  Google Scholar 

  • Moosvi S, Kher X, Madamwar D (2007) Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes Pigments 74:723–729

    Article  CAS  Google Scholar 

  • Mukerjee P, Mysels KJ (1971) Critical micelle concentration of aqueous surfactant systems. NSRDS-NBS 36. US. Government Printing Office, Washington, D.C

    Google Scholar 

  • Ogugbue CJ, Sawidis T, Oranusi NA (2012) Bioremoval of chemically different synthetic dyes by Aeromonas hydrophila in simulated wastewater containing dyeing auxiliaries. Ann Microbiol 62:1141–1153

    Article  CAS  Google Scholar 

  • Owsianiak M, Chrzanowski L, Szulc A, Staniewski J, Olszanowski A, Olejnik-Schmidt AK, Heipieper HJ (2009) Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants. Bioresour Technol 100:1497–1500

    Article  CAS  Google Scholar 

  • Parra E, Moleiro LH, López-Montero I, Cruz A, Monroy F, Pérez-Gil J (2011) A combined action of pulmonary surfactant proteins SP-B and SP-C modulates permeability and dynamics of phospholipid membranes. Biochem J 438:555–564

    Article  CAS  Google Scholar 

  • Parshetti GK, Kalme SD, Gomare SS, Govindwar SP (2007) Biodegradation of reactive blue-25 by Aspergillus ochraceus NCIM-1146. Bioresour Technol 98:3638–3642

    Article  CAS  Google Scholar 

  • Parshetti GK, Telke AA, Kalyani DC, Govindwar SP (2010) Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. J Hazard Mater 176:503–509

    Article  CAS  Google Scholar 

  • Pavlic Z, Cifrek ZV, Puntaric D (2005) Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and to marine diatoms Phaeodactylum tricornutum and Skeletonema costatum. Chemosphere 61:1061–1068

    Article  CAS  Google Scholar 

  • Peace Stuart G (1995) Taguchi methods, a hands-on approach to quality engineering. Addison-Wesley Publishing Company, Reading

    Google Scholar 

  • Phadke MS (1989) Quality engineering using robust design. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Radhakrishin JS, Saraswati PN (2015) Microbial decolorization of methyl orange by Klebsiella spp. DA26. Int J Res Biosci 4(3):29–38

    Google Scholar 

  • Ratna Padhi BS (2012) Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. Int J Environ Sci 3(3):940–955

    Google Scholar 

  • Ren S, Guo J, Zeng G, Sun G (2006) Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl Microbiol Biotechnol 72:1316–1321

    Article  CAS  Google Scholar 

  • Ruta IG, Juozas K (2013) Effects of rhamnolipid biosurfactant JBR425 and synthetic surfactant Surfynol465 on the peroxidase-catalyzed oxidation of 2-naphthol. J Environ Sci 25(7):1431–1440

    Article  CAS  Google Scholar 

  • Saeki H, Sasaki M, Komatsu K, Miura A, Matsuda H (2009) Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058. Bioresour Technol 100:572–577

    Article  CAS  Google Scholar 

  • Salihu A, Abdulkadir I, Almustapha MN (2009) An investigation for potential development on biosurfactants. Biotechnol Mol Biol Rev 4:111–117

    CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157

    Article  CAS  Google Scholar 

  • Seesuriyachan P, Takenaka S, Kuntiya A, Klayraung S, Murakami S, Aoki K (2007) Metabolism of azo dyes by Lactobacillus casei TISTR 1500 and effects of various factors on decolorization. Water Res 41:985–992

    Article  CAS  Google Scholar 

  • Selvam K, Shanmuga Priya M (2012) Biological treatment of Azo dyes and textile industry effluent by newly isolated White rot fungi Schizophyllum commune and Lenzites eximia. Int J Environ Sci 2

  • Seyis I, Subasioglu T (2008) Comparison of live and dead biomass of fungi on decolorization of methyl orange. Afr J Biotechnol 7(13):2212–2216

    CAS  Google Scholar 

  • Shah MP (2014) Isolation and screening of dye decolorizing bacteria. J Appl Environ Microbiol 2(5):244–248

    Google Scholar 

  • Shah MP, Patel KA, Nair SS, Darji AM (2013a) Microbial decolorization of methyl orange dye by Pseudomonas spp ETL-M. Int J Environ Bioremed Biodegrad 1(2):54–59

    Google Scholar 

  • Shah MP, Patel KA, Nair SS, Darji AM (2013b) Selection of bacterial strains efficient in decolourisation of Remazol Black-B. Open Access Biotechnol 2:14

    Google Scholar 

  • Shah MP, Patel KA, Nair SS, Darji AM, Maharaul S (2013c) Exploiting Application of Pseudomonas spp. ETL-2013 in microbial degradation and decolorization of disperse orange. J Bioremed Biodegrad 4:6

    Google Scholar 

  • Sharma S, Saxena R, Gaur G (2014) Study of removal techniques for azo dyes by biosorption: a review. J Appl Chem 7(10):06–21

    Google Scholar 

  • Shedbalkar U, Jadhav JP (2011) Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron. Biotechnol Bioprocess Eng 16(1):196–204

    Article  CAS  Google Scholar 

  • Shoeb E, Akhlaq F, Badar U, Akhter J, Imtiaz S (2013) Classification and industrial applications of biosurfactants. Part-I: Nat Appl Sci 4(3):243–252

    Google Scholar 

  • Solis M, Solis A, Perez HI, Mnjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47:1723–1748

    Article  CAS  Google Scholar 

  • Tantiwa N, Seesuriyachan P, Kuntiya A (2013) Strategies to decolorize high concentrations of methyl orange using growing cells of Lactobacillus casei TISTR 1500. Biosci Biotechnol Biochem 77(10):2030–2037

    Article  CAS  Google Scholar 

  • Tastan BE, Ertugrul S, Donmez G (2010) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioressour Technol 101:870–876

    Article  CAS  Google Scholar 

  • Tehrani-Bagha R, Holmberg K (2013) Solubilization of hydrophobic dyes in surfactant solutions. Mater 6:580–608

    Article  CAS  Google Scholar 

  • Umesh UJ, Vishal VD, Gajanan SG, Sanjay PG (2008) Biodegradation of Direct Red 5B, a textile dye by newly isolated Comamonas sp UVS. J Hazard Mater 158:507–516

    Article  CAS  Google Scholar 

  • Urum K, Pekdemir T, Gopur M (2003) Optimum conditions for washing of contaminated soil with biosurfactant solutions. Inst Chem Eng 81(3):203–209

    CAS  Google Scholar 

  • Vaidyanathan S, Orr BG, Banaszak Holl MM (2014) Detergent Induction of HEK 293A cell membrane permeability measured under quiescent and superfusion conditions using whole cell patch clamp. J Phys Chem B 118:2112–2123

    Article  CAS  Google Scholar 

  • Yaofeng W (2009) Encapsulation of myoglobin in a cetyl trimethylammonium bromide micelle in vacuo: a simulation study. Biochemistry 48(5):1006–1015

    Article  CAS  Google Scholar 

  • Zeng G-M, Shi J-G, Yuan X-Z, Liu J, Zhang Z-B, Huang G-H, Li J-B, Xi B-D, Liu H-L (2006) Effects of Tween 80 and rhamnolipid on the extracellular enzymes of Penicillium simplicissimum isolated from compost. Enz Microbial Technol 39:1451–1456

    Article  CAS  Google Scholar 

  • Zhang Q, He G, Wang J, Cai W, Xu Y (2009) Mechanisms of the stimulatory effects of rhamnolipid biosurfactant on rice straw hydrolysis. Appl Energy 86:233–237

    Article  CAS  Google Scholar 

  • Zhang Y, Zeng Z, Zeng G, Liud X, Liu Z, Chen M, Liu L, Lie J, Xie G (2012) Effect of Triton X-100 on the removal of aqueous phenol by laccase analyzed with a combined approach of experiments and molecular docking. Colloids Surf B 97:7–12

    Article  CAS  Google Scholar 

  • Zhou M-F, Yuan X-Z, Zhong H, Liu Z-F, Li H, Jiang L-L, Zeng GM (2011) Effect of biosurfactants on laccase production and phenol biodegradation in solid-state fermentation. Appl Biochem Biotechnol 164:103–114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the “Tunisian Ministry of Higher Education, Scientific Research and Technology.”

Ethical statement

The experimental protocols were conducted in accordance with the Guide for the Care and Use of Laboratory Animals issued by the University of Sfax, Tunisia, and approved by the Tunisia Committee of Animal Ethics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inès Mnif.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnif, I., Maktouf, S., Fendri, R. et al. Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition. Environ Sci Pollut Res 23, 1742–1754 (2016). https://doi.org/10.1007/s11356-015-5294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5294-9

Keywords

Navigation