Skip to main content
Log in

Analysis of phenolic compounds in the dissolved and suspended phases of Lake Balaton water by gas chromatography-tandem mass spectrometry

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As a novel approach to characterize the phenolic pollutants of Lake Balaton (Central Europe, western Hungary), 26 endocrine disrupting phenols (chlorophenols, nitrophenols, alkylphenols, triclosan, bisphenol-A) were quantified in dissolved and suspended particulate matter (SPM) phases, alike. Sample collection was performed in the western and eastern basins, at 20 sites in April and October 2014. Solid-phase and ultrasound-assisted extractions to withdraw target phenols from dissolved and suspended phases were employed. Compounds were derivatized with hexamethyldisilazane and trifluoroacetic acid for their quantification as trimethylsilyl derivatives by gas chromatography-tandem mass spectrometry. In Lake Balaton’s dissolved phase, 2-chlorophenol (103–164 ng/L), 4-chlorophenol (407–888 ng/L), 2,4-dichlorophenol (20.2–72.0 ng/L), 2,4,6-trichlorophenol (10.4–38.1 ng/L), 2-nitrophenol (31.0–66.5 ng/L), 4-nitrophenol (31.5–94.1 ng/L), and bisphenol-A (20.6–112 ng/L), while in its SPM, 4-chlorophenol (<LOQ-1274 μg/kg, dry matter), 4-nitrophenol (423–714 μg/kg), 4-nonylphenol isomers (1500–2910 μg/kg), and bisphenol-A (250–587 μg/kg) were determined. Since phenolics appear partially or exclusively in the SPM, the analysis of both phases proved to be of primary importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahel M, McEvoy J, Giger W (1993) Bioaccumulation of the lipophilic metabolites of nonionic surfactants in freshwater organisms. Environ Pollut 79:243–248

    Article  CAS  Google Scholar 

  • Andrási N, Helenkár A, Vasanits-Zsigrai A, Záray G, Molnár-Perl I (2011a) Derivatization and mass fragmentation studies of steroids as their trimethylsilyl (oxime) ether derivatives by gas chromatography mass spectrometry. J Chromatogr A 1218:1878–1890

    Article  Google Scholar 

  • Andrási N, Helenkár A, Vasanits-Zsigrai A, Záray G, Molnár-Perl I (2011b) The role of the acquisition methods in the analysis of steroids as their trimethylsilyl (oxime) ether derivatives by gas chromatography mass spectrometry: analysis of steroid pollutants in water samples. J Chromatogr A 1218:8264–8272

    Article  Google Scholar 

  • Andrási N, Helenkár A, Molnár B, Vasanits-Zsigrai A, Záray G, Molnár-Perl I (2013) Determination of steroids in the dissolved and in the suspended phases of wastewater and Danube River samples by gas chromatography, tandem mass spectrometry. Talanta 115:367–373

    Article  Google Scholar 

  • Arditsoglou A, Voutsa D (2008) Determination of phenolic and steroid endocrine disrupting compounds in environmental matrices. Environ Sci Pollut Res 15:228–236

    Article  CAS  Google Scholar 

  • Aruoja V, Sihtmäe M, Dubourguier H-C, Kahru A (2011) Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: comparison with published data and QSARs. Chemosphere 84:1310–1320

    Article  CAS  Google Scholar 

  • Asimakopoulos AG, Thomaidis NS, Koupparis MA (2012) Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol. Toxicol Lett 210:141–154

    Article  CAS  Google Scholar 

  • Asman WAH, Jørgensen A, Bossi R, Vejrup KV, Bügel Mogensen B, Glasius M (2005) Wet deposition of pesticides and nitrophenols at two sites in Denmark: measurements and contributions from regional sources. Chemosphere 59:1023–1031

    Article  CAS  Google Scholar 

  • Cespedes R, Lacorte S, Ginebreda A, Barcelo D (2008) Occurrence and fate of alkylphenols and alkylphenol ethoxylates in sewage treatment plants and impact on receiving waters along the Ter River (Catalonia, NE Spain). Environ Pollut 153:384–392

    Article  CAS  Google Scholar 

  • Chen M, Tang R, Fu G, Xu B, Zhu P, Qiao S, Chen X, Xu B, Qin Y, Lu C, Hang B, Xia Y, Wang X (2013) Association of exposure to phenols and idiopathic male infertility. J Hazard Mater 250–251:115–121

    Article  Google Scholar 

  • Czaplicka M (2004) Sources and transformations of chlorophenols in the natural environment. Sci Total Environ 322:21–39

    Article  CAS  Google Scholar 

  • Domínguez-Morueco N, González-Alonso S, Valcárcel Y (2014) Phthalate occurrence in rivers and tap water from central Spain. Sci Total Environ 500–501:139–146

    Article  Google Scholar 

  • EWFD: Directive 2013/39/EU, amendment to the European water framework directive (2000/60/EC)

  • Faludi T, Andrási N, Vasanits-Zsigrai A, Záray G, Molnár-Perl I (2013) Systematic derivatization, mass fragmentation and acquisition studies in the analysis of chlorophenols, as their silyl derivatives by gas chromatography–mass spectrometry. J Chromatogr A 1302:133–142

    Article  CAS  Google Scholar 

  • Faludi T, Vasanits-Zsigrai A, Záray G, Molnár-Perl I (2015) Identification, quantification and distribution of substituted phenols in the dissolved and suspended phases of water samples by gas chromatography tandem mass spectrometry: derivatization, mass fragmentation and acquisition studies. Microchem J 118:45–54

    Article  CAS  Google Scholar 

  • Gao J, Liu L, Liu X, Zhou H, Huang S, Wang Z (2008) Levels and spatial distribution of chlorophenols—2,4-Dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol in surface water of China. Chemosphere 71:1181–1187

    Article  CAS  Google Scholar 

  • Ge F, Zhu L, Wang J (2008) Distribution of chlorination products of phenols under various pHs in water disinfection. Desalination 225:156–166

    Article  CAS  Google Scholar 

  • Habauzit V, Morand C (2011) Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for Advances in Chronic Disease 3, 87–106

  • Harrison MAJ, Barra S, Borghesi D, Vione D, Arsene C, Iulian Olariu R (2005) Nitrated phenols in the atmosphere: a review. Atmos Environ 39:231–248

    Article  CAS  Google Scholar 

  • Heemken OP, Reincke H, Stachel B, Theobald N (2001) The occurrence of xenoestrogens in the Elbe river and the North Sea. Chemosphere 45:245–259

    Article  CAS  Google Scholar 

  • Hlavay J, Polyák K (1998) Chemical speciation of elements in sediment samples collected at Lake Balaton. Microchem J 58:281–290

    Article  CAS  Google Scholar 

  • Holcombe GW, Phipps GL, Knuth ML, Felhaber T (1984) The acute toxicity of selected substituted phenols, benzenes and benzoic acid esters to fathead minnows Pimephales promelas. Environ Pollut A 35:367–381

    Article  CAS  Google Scholar 

  • Huang YQ, Wong CKC, Zheng JS, Bouwman H, Barra R, Wahlström B, Neretin L, Wong MH (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42:91–99

    Article  CAS  Google Scholar 

  • Isobe T, Nishiyama H, Nakashima A, Takada H (2001) Distribution and behavior of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo metropolitan area: their association with aquatic particles and sedimentary distributions. Environ Sci Technol 35:1041–1049

    Article  CAS  Google Scholar 

  • Jálová V, Jarošová B, Bláha L, Giesy JP, Ocelka T, Grabic R, Jurčíková J, Vrana B, Hilscherová K (2013) Estrogen-, androgen- and aryl hydrocarbon receptor mediated activities in passive and composite samples from municipal waste and surface waters. Environ Int 59:372–383

    Article  Google Scholar 

  • Kiss G, Gelencsér A, Krivácsy Z, Hlavay J (1997) Occurrence and determination of organic pollutants in aerosol, precipitation, and sediment samples collected at Lake Balaton. J Chromatogr A 774:349–361

    Article  CAS  Google Scholar 

  • Kovács Á, Mörtl M, Kende A (2011) Development and optimization of a method for the analysis of phenols and chlorophenols from aqueous samples by gas chromatography–mass spectrometry, after solid-phase extraction and trimethylsilylation. Microchem J 99:125–131

    Article  Google Scholar 

  • Lee C-C, Jiang L-Y, Kuo Y-L, Chen C-Y, Hsieh C-Y, Hung C-F, Tien C-J (2015) Characteristics of nonylphenol and bisphenol A accumulation by fish and implications for ecological and human health. Sci Total Environ 502:417–425

    Article  CAS  Google Scholar 

  • Li Z, Li D, Oh J-R, Je J-G (2004) Seasonal and spatial distribution of nonylphenol in Shihwa Lake, Korea. Chemosphere 56:611–618

    Article  CAS  Google Scholar 

  • Li Z, Gibson M, Liu C, Hu H (2013) Seasonal variation of nonylphenol concentrations and fluxes with influence of flooding in the Daliao River Estuary, China. Environ Monit Assess 185:5221–5230

    Article  CAS  Google Scholar 

  • Liu J, Wang R, Huang B, Lin C, Wang Y, Pan X (2011) Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China. Environ Pollut 159:2815–2822

    Article  CAS  Google Scholar 

  • Loos R, Locoro G, Contini S (2010) Occurrence of polar organic contaminants in the dissolved water phase of the Danube River and its major tributaries using SPE-LC-MS2 analysis. Water Res 44:2325–2335

    Article  CAS  Google Scholar 

  • Maloschik E, Ernst A, Hegedűs G, Darvas B, Székács A (2007) Monitoring water-polluting pesticides in Hungary. Microchem J 85:88–97

    Article  CAS  Google Scholar 

  • Mayer T, Bennie D, Rosa F, Rekas G, Palabrica V, Schachtschneider J (2007) Occurrence of alkylphenolic substances in a Great Lakes coastal marsh, Cootes Paradise, ON, Canada. Environ Pollut 147:683–690

    Article  CAS  Google Scholar 

  • Nguyen HL, Leermakers M, Kurunczi S, Bozo L, Baeyens W (2005a) Mercury distribution and speciation in Lake Balaton, Hungary. Sci Total Environ 340:231–246

    Article  CAS  Google Scholar 

  • Nguyen HL, Leermakers M, Osán J, Török S, Baeyens W (2005b) Heavy metals in Lake Balaton: water column, suspended matter, sediment and biota. Sci Total Environ 340:213–230

    Article  CAS  Google Scholar 

  • Paasivirta J, Heinola K, Humppi T, Karjalainen A, Knuutinen J, Maentykoski K, Paukku R, Piilola T, Surma-Aho K, Tarhanen J, Welling L, Vihonen H (1985) Polychlorinated phenols, guaiacols and catechols in environment. Chemosphere 14:469–491

    Article  CAS  Google Scholar 

  • Patil GP (2006) Composite sampling. Ecological stataistic, in Encyclopedia of Environmetrics. Wiley

  • Patrolecco L, Capri S, Angelis S, Pagnotta R, Polesello S, Valsecchi S (2006) Partition of nonylphenol and related compounds among different aquatic compartments in Tiber River (Central Italy). Water Air Soil Pollut 172:151–166

    Article  CAS  Google Scholar 

  • Pera-Titus M, García-Molina V, Baños MA, Giménez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47:219–256

    Article  CAS  Google Scholar 

  • Petrovic M, Lacorte S, Viana P, Barceló D (2002) Pressurized liquid extraction followed by liquid chromatography–mass spectrometry for the determination of alkylphenolic compounds in river sediment. J Chromatogr A 959:15–23

    Article  CAS  Google Scholar 

  • Philippat C, Mortamais M, Chevrier C, Petit C, Calafat AM, Ye X, Silva MJ, Brambilla C, Pin I, Charles M-A, Cordier S, Slama R (2012) Exposure to phthalates and phenols during pregnancy and offspring size at birth. Environ Health Perspect 120:464–470

    Article  CAS  Google Scholar 

  • Prasain K, Nguyen TDT, Gorman MJ, Barrigan LM, Peng Z, Kanost MR, Syed LU, Li J, Zhu KY, Hua DH (2012) Redox potentials, laccase oxidation, and antilarval activities of substituted phenols. Bioorg Med Chem 20:1679–1689

    Article  CAS  Google Scholar 

  • Ren Y-Z, Franke M, Anschuetz F, Ondruschka B, Ignaszak A, Braeutigam P (2014) Sonoelectrochemical degradation of triclosan in water. Ultrason Sonochem 21:2020–2025

    Article  CAS  Google Scholar 

  • Rochester JR (2013) Bisphenol A and human health: a review of the literature. Reprod Toxicol 42:132–155

    Article  CAS  Google Scholar 

  • Sanders JM, Bucher JR, Peckham JC, Kissling GE, Hejtmancik MR, Chhabra RS (2009) Carcinogenesis studies of cresols in rats and mice. Toxicology 257:33–39

    Article  CAS  Google Scholar 

  • Schummer C, Groff C, Al Chami J, Jaber F, Millet M (2009) Analysis of phenols and nitrophenols in rainwater collected simultaneously on an urban and rural site in east of France. Sci Total Environ 407:5637–5643

    Article  CAS  Google Scholar 

  • Schüssler W, Nitschke L (2001) Nitrophenols in precipitation. Chemosphere 42:277–283

    Article  Google Scholar 

  • Sebők Á, Sezer K, Vasanits-Zsigrai A, Helenkár A, Záray G, Molnár-Perl I (2008) Gas chromatography-mass spectrometry of the trimethylsilyl (oxime) ether/ester derivatives of cholic acids: their presence in the aquatic environment. J Chromatogr A 1211:104–112

    Article  Google Scholar 

  • Sebők Á, Vasanits-Zsigrai A, Helenkár A, Záray G, Molnár-Perl I (2009) Multiresidue analysis of water soluble pollutants as their trimethylsilyl derivatives, by gas chromatography mass spectrometry. J Chromatogr A 1216:2288–2301

    Article  Google Scholar 

  • Takayanagi S, Tokunaga T, Liu X, Okada H, Matsushima A, Shimohigashi Y (2006) Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor γ (ERRγ) with high constitutive activity. Toxicol Lett 167:95–105

    Article  CAS  Google Scholar 

  • USA Code of Federal Regulations, Title 40, Volume 30, Part 423, Appendix A

  • Wang X, Luo L, Ouyang G, Lin L, Tam NFY, Lan C, Luan T (2009) One-step extraction and derivatization liquid-phase microextraction for the determination of chlorophenols by gas chromatography–mass spectrometry. J Chromatogr A 1216:6267–6273

    Article  CAS  Google Scholar 

  • Weisz M, Polyák K, Hlavay J (2000) Fractionation of elements in sediment samples collected in rivers and harbors at Lake Balaton and its catchment area. Microchem J 67:207–217

    Article  CAS  Google Scholar 

  • Wu J, Wang X, Ying F, Hu G, Wang X, Li D, Yu H, Han X (2011) In vitro assessment of reproductive toxicity on rats induced by organic contaminants of source water. Ecotox Environ Safe 74:1756–1764

    Article  CAS  Google Scholar 

  • Zgoła-Grześkowiak A, Grześkowiak T, Rydlichowski R, Łukaszewski Z (2009) Determination of nonylphenol and short-chained nonylphenol ethoxylates in drain water from an agricultural area. Chemosphere 75:513–518

    Article  Google Scholar 

  • Zhong W, Wang D, Xu X, Luo Q, Wang B, Shan X, Wang Z (2010) Screening level ecological risk assessment for phenols in surface water of the Taihu Lake. Chemosphere 80:998–1005

    Article  CAS  Google Scholar 

  • Zhong W, Wang D, Xu X (2012) Phenol removal efficiencies of sewage treatment processes and ecological risks associated with phenols in effluents. J Hazard Mater 217–218:286–292

    Article  Google Scholar 

Download references

Acknowledgments

The study was financed by the Balaton-monitoring program of the HAS, the TÁMOP-4.2.2.A-11/1/KONV-2012-0038, and TÁMOP-4.2.2.A-11/1/KONV-2012-0064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Molnár-Perl.

Additional information

Responsible editor: Roland Kallenborn

Highlights

• Lake Balaton’s phenolics, dissolved and suspended, alike were analyzed by GC-MS-MS.

• Solid-phase and ultrasonic enrichments were utilized for the extraction of compounds.

• Out of 26, in total 8 species were found in the dissolved and suspended phases.

• Spatial and seasonal concentration changes were noted during sampling campaigns.

• Complementary analysis of pollutants in both phases proved to be obligatory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faludi, T., Balogh, C., Serfőző, Z. et al. Analysis of phenolic compounds in the dissolved and suspended phases of Lake Balaton water by gas chromatography-tandem mass spectrometry. Environ Sci Pollut Res 22, 11966–11974 (2015). https://doi.org/10.1007/s11356-015-4734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4734-x

Keywords

Navigation