Skip to main content
Log in

QSAR as a random event: a case of NOAEL

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Quantitative structure–activity relationships (QSAR) for no observed adverse effect levels (NOAEL, mmol/kg/day, in logarithmic units) are suggested. Simplified molecular input line entry systems (SMILES) were used for molecular structure representation. Monte Carlo method was used for one-variable models building up for three different splits into the “visible” training set and “invisible” validation. The statistical quality of the models for three random splits are the following: split 1 n = 180, r 2 = 0.718, q 2 = 0.712, s = 0.403, F = 454 (training set); n = 17, r 2 = 0.544, s = 0.367 (calibration set); n = 21, r 2 = 0.61, s = 0.44, r m 2 = 0.61 (validation set); split 2 n = 169, r 2 = 0.711, q 2 = 0.705, s = 0.409, F = 411 (training set); n = 27, r 2 = 0.512, s = 0.461 (calibration set); n = 22, r 2 = 0.669, s = 0.360, r m 2 = 0.63 (validation set); split 3 n = 172, r 2 = 0.679, q 2 = 0.672, s = 0.420, F = 360 (training set); n = 19, r 2 = 0.617, s = 0.582 (calibration set); n = 21, r 2 = 0.627, s = 0.367, r m 2 = 0.54 (validation set). All models are built according to OCED principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afantitis A, Melagraki G, Koutentis PA, Sarimveis H, Kollias G (2011) Ligand-based virtual screening procedure for the prediction and the identification of novel β-amyloid aggregation inhibitors using Kohonen maps and Counterpropagation Artificial Neural Networks. Eur J Med Chem 46(2):497–508

    Article  CAS  Google Scholar 

  • Contrera JF, Matthews EJ, Kruhlak NL, Benz RD (2004) Estimating the safe starting dose in phase I clinical trials and no observed effect level based on QSAR modeling of the human maximum recommended daily dose. Regul Toxicol Pharm 40(3):185–206

    Article  CAS  Google Scholar 

  • Dobchev DA, Tulp I, Karelson G, Tamm T, Tämma K, Karelson M (2013) Subchronic oral and inhalation toxicities: a challenging attempt for modeling and prediction. Mol Inf 32(9–10):793–801

    Article  CAS  Google Scholar 

  • Furtula B, Gutman I (2011) Relation between second and third geometric-arithmetic indices of trees. J Chemometr 25(2):87–91

    Article  CAS  Google Scholar 

  • Gajewska M, Worth A, Urani C, Briesen H, Schramm K-W (2014) Application of physiologically-based toxicokinetic modelling in oral-to-dermal extrapolation of threshold doses of cosmetic ingredients. Toxicol Lett 227(3):189–202

    Article  CAS  Google Scholar 

  • García J, Duchowicz PR, Rozas MF, Caram JA, Mirífico MV, Fernández FM, Castro EA (2011) A comparative QSAR on 1,2,5-thiadiazolidin-3-one 1,1-dioxide compounds as selective inhibitors of human serine proteinases. J Mol Graph Model 31:10–19

    Article  Google Scholar 

  • Garro-Martinez JC, Duchowicz PR, Estrada MR, Zamarbide GN, Castro EA (2011) QSAR study and molecular design of open-chain enaminones as anticonvulsant agents. Int J Mol Sci 12(12):9354–9368

    Article  CAS  Google Scholar 

  • Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20(4):269–276

    Article  CAS  Google Scholar 

  • Goto, T., 2013. QSAR modeling using a set of intermediate-duration oral NOELs (2013), PhD thesis, https://etd.library.emory.edu/view/record/pid/emory:d724n

  • Ibezim E, Duchowicz PR, Ortiz EV, Castro EA (2012) QSAR on aryl-piperazine derivatives with activity on malaria. Chemometr Intell Lab Syst 110(1):81–88

    Article  CAS  Google Scholar 

  • Lewis RW, Billington R, Debryune E, Gamer A, Lang B, Carpanini F (2002) Recognition of adverse and nonadverse effects in toxicity studies. Toxicol Path 30(1):66–74

    Article  CAS  Google Scholar 

  • Mazzatorta P, Estevez MD, Coulet M, Schilter B (2008) Modeling oral rat chronic toxicity. J Chem Inf Model 48(10):1949–1954

    Article  CAS  Google Scholar 

  • Mullen LMA, Duchowicz PR, Castro EA (2011) QSAR treatment on a new class of triphenylmethyl-containing compounds as potent anticancer agents. Chemometr Intell Lab Syst 107(2):269–275

    Article  CAS  Google Scholar 

  • Nesmerak K, Toropov AA, Toropova AP, Kohoutova P, Waisser K (2013) SMILES-based quantitative structure-property relationships for half-wave potential of N-benzylsalicylthioamides. Eur J Med Chem 67:111–114

    Article  CAS  Google Scholar 

  • OECD, 2007, Guidance document on the validation of (quantitative) structure-activity relationships [(Q)Sar] models, http://www.oecd.org/dataoecd/55/35/38130292.pdf

  • Ojha PK, Roy K (2011) Comparative QSARs for antimalarial endochins: importance of descriptor-thinning and noise reduction prior to feature selection. Chemometr Intell Lab Syst 109(2):146–161

    Article  CAS  Google Scholar 

  • Parasuraman S (2011) Toxicological screening. J Pharmacol Pharmacoth 2(2):74–79

    Article  CAS  Google Scholar 

  • Park Y-C, Cho M-H (2011) A new way in deciding NOAEL based on the findings from GLP-toxicity test. Toxicol Res 27(3):133–135

    Article  Google Scholar 

  • Roy K, Mitra I (2012) Electrotopological state atom (E-state) index in drug design, QSAR, property prediction and toxicity assessment. Curr Comput-Aid Drug Des 8(2):135–158

    Article  CAS  Google Scholar 

  • Roy PP, Leonard JT, Roy K (2008) Exploring the impact of size of training sets for the development of predictive QSAR models. Chemometr Intell Lab Syst 90(1):31–42

    Article  CAS  Google Scholar 

  • Roy K, Mitra I, Ojha PK, Kar S, Das RN, Kabir H (2012a) Introduction of rm 2 (rank) metric incorporating rank-order predictions as an additional tool for validation of QSAR/QSPR models. Chemometr Intell Lab Syst 118:200–210

    Article  CAS  Google Scholar 

  • Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H (2012b) Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model 52(2):396–408

    Article  CAS  Google Scholar 

  • Rupp B, Appel KE, Gundert-Remy U (2010) Chronic oral LOAEL prediction by using a commercially available computational QSAR tool. Arch Toxicol 84(9):681–688

    Article  CAS  Google Scholar 

  • Toropov AA, Toropova AP, Benfenati E (2009) QSPR modeling bioconcentration factor (BCF) by balance of correlations. Eur J Med Chem 44(6):2544–2551

    Article  CAS  Google Scholar 

  • Toropov AA, Toropova AP, Puzyn T, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2013) QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells. Chemosphere 92(1):31–37

    Article  CAS  Google Scholar 

  • Toropova AP, Toropov AA (2013) Optimal descriptor as a translator of eclectic information into the prediction of membrane damage by means of various TiO2 nanoparticles. Chemosphere 93(10):2650–2655

    Article  CAS  Google Scholar 

  • Toropova AP, Toropov AA (2014) CORAL software: prediction of carcinogenicity of drugs by means of the Monte Carlo method. Eur J Pharm Sci 52(1):21–25

    Article  CAS  Google Scholar 

  • Toropova AP, Toropov AA, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2011) CORAL: quantitative structure-activity relationship models for estimating toxicity of organic compounds in rats. J Comput Chem 32(12):2727–2733

    Article  CAS  Google Scholar 

  • Veselinović AM, Milosavljević JB, Toropov AA, Nikolić GM (2013a) SMILES-based QSAR model for arylpiperazines as high-affinity 5-HT1A receptor ligands using CORAL. Eur J Pharm Sci 48(3):532–541

    Article  Google Scholar 

  • Veselinović AM, Milosavljević JB, Toropov AA, Nikolić GM (2013b) SMILES-Based QSAR models for the calcium channel-antagonistic effect of 1,4-dihydropyridines. Arch Pharm 346:134–139

    Article  Google Scholar 

  • Wang Y-J, Dou J, Cross KP, Valerio LG (2011) Computational analysis for hepatic safety signals of constituents present in botanical extracts widely used by women in the United States for treatment of menopausal symptoms. Regul Toxicol Pharm 59(1):111–124

    Article  Google Scholar 

  • Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36

    Article  CAS  Google Scholar 

  • Weininger D (1990) Smiles. 3. Depict. Graphical depiction of chemical structures. J Chem Inf Comput Sci 30(3):237–243

    Article  CAS  Google Scholar 

  • Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci 29:97–101

    Article  CAS  Google Scholar 

  • Zhu H, Ye L, Richard A, Golbraikh A, Wright FA, Rusyn I, Tropsha A (2009) A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents. Environ Health Persp 117(8):1257–1264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Toropov.

Additional information

Responsible editor: Michael Matthies

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1002 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropova, A.P., Toropov, A.A., Veselinović, J.B. et al. QSAR as a random event: a case of NOAEL. Environ Sci Pollut Res 22, 8264–8271 (2015). https://doi.org/10.1007/s11356-014-3977-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3977-2

Keywords

Navigation