Skip to main content
Log in

Predictive QSAR modelling of algal toxicity of ionic liquids and its interspecies correlation with Daphnia toxicity

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Predictive toxicology using chemometric tools can be very useful in order to fill the data gaps for ionic liquids (ILs) with limited available experimental toxicity information, in view of their growing industrial uses. Though originally promoted as green chemicals, ILs have now been shown to possess considerable toxicity against different ecological endpoints. Against this background, quantitative structure-activity relationship (QSAR) models have been developed here for the toxicity of ILs against the green algae Scenedesmus vacuolatus using computed descriptors with definite physicochemical meaning. The final models emerged from E-state indices, extended topochemical atom (ETA) indices and quantum topological molecular similarity (QTMS) indices. The developed partial least squares models support the established mechanism of toxicity of ionic liquids in terms of a surfactant action of cations and chaotropic action of anions. The models have been developed within the guidelines of the Organization of Economic Co-operation and Development (OECD) for regulatory QSAR models, and they have been validated both internally and externally using multiple strategies and also tested for applicability domain. A preliminary attempt has also been made, for the first time, to develop interspecies quantitative toxicity-toxicity relationship (QTTR) models for the algal toxicity of ILs with Daphnia toxicity, which should be interesting while predicting toxicity of ILs for an endpoint when the data for the other are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Benedetti PGD, Fanelli F (2010) Computational quantum chemistry and adaptive ligand modeling in mechanistic QSAR. Drug Discov Today 15:859–866

    Article  Google Scholar 

  • Benigni R, Giuliani A (2003) Putting the predictive toxicology challenge into perspective: reflections on the results. Bioinformatics 19:1194–1200

    Article  CAS  Google Scholar 

  • Bhhatarai B, Garg R, Gramatica P (2010) Are mechanistic and statistical QSAR approaches really different? MLR studies on 158 cycloalkyl-pyranones. Mol Inf 29:511–522

    Article  CAS  Google Scholar 

  • Bubalo MC, Radošević K, Redovniković IR, Halambek J, Srček VG (2014) A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf 99:1–12

  • Cerius2 (2005) Cerius2 version 4.10, Accelrys Inc. San Diego, CA, USA. http://www.accelrys.com. Accessed 22 Apr 2014

  • Das RN, Roy K (2012) Development of classification and regression models for Vibrio fischeri toxicity of ionic liquids: green solvents for the future. Toxicol Res 1:186–195

    Article  Google Scholar 

  • Das RN, Roy K (2013a) Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future. Mol Divers 17:151–196

    Article  CAS  Google Scholar 

  • Das RN, Roy K (2013b) QSTR with extended topochemical atom (ETA) indices. 16. Development of predictive classification and regression models for toxicity of ionic liquids towards Daphnia magna. J Hazard Mater 166–178:254–255

    Google Scholar 

  • Das RN, Roy K (2014) Predictive modeling studies for the ecotoxicity of ionic liquids towards the green algae Scenedesmus vacuolatus. Chemosphere 104:170–176

    Article  CAS  Google Scholar 

  • Fatemi MH, Izadiyan P (2011) Cytotoxicity estimation of ionic liquids based on their effective structural features. Chemosphere 84:553–563

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc, Wallingford

    Google Scholar 

  • GaussView4.1, Semichem Inc., Gaussian Inc., Pittsburgh, PA, USA, 2003

  • Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701

    Article  CAS  Google Scholar 

  • Hall LH, Kier LB (2000) The E-state as the basis for molecular structure space definition and structure similarity. J Chem Inf Comput Sci 40:784–791

    Article  CAS  Google Scholar 

  • Irabien A, Garea A, Luis P (2009) Hybrid molecular QSAR model for toxicity estimation: application to ionic liquids. Comput Aided Chem Eng 26:63–67

    Article  CAS  Google Scholar 

  • Ismail Hossain M, Samir BB, El-Harbawi M, Masri AN, Abdul Mutalib MI, Hefter G, Yin C-Y (2011) Development of a novel mathematical model using a group contribution method for prediction of ionic liquid toxicities. Chemosphere 85:990–994

    Article  CAS  Google Scholar 

  • Izadiyan P, Fatemi MH, Izadiyan M (2013) Elicitation of the most important structural properties of ionic liquids affecting ecotoxicity in limnic green algae; a QSAR approach. Ecotoxicol Environ Saf 87:42–48

    Article  CAS  Google Scholar 

  • Kar S, Roy K (2010a) First report on interspecies quantitative correlation of ecotoxicity of pharmaceuticals. Chemosphere 81:738–747

    Article  CAS  Google Scholar 

  • Kar S, Roy K (2010b) Predictive toxicology using QSAR: a perspective. J Indian Chem Soc 87:1455–1515

    CAS  Google Scholar 

  • Luis P, Ortiz I, Aldaco R, Irabien A (2007) A novel group contribution method in the development of a QSAR for predicting the toxicity (Vibrio fischeri EC50) of ionic liquids. Ecotoxicol Environ Saf 67:423–429

    Article  CAS  Google Scholar 

  • Mester P, Wagner M, Rossmanith P (2012) Ionic liquids designed as chaotrope and surfactant for use in protein chemistry. Sep Purif Technol 97:211–215

    Article  CAS  Google Scholar 

  • Minitab Inc. (2004) MINITAB version 14.13, Minitab Inc., USA, http://www.minitab.com/en-US/default.aspx. Accessed 22 April 2014

  • Mitra I, Saha A, Roy K (2010) Exploring quantitative structure-activity relationship (QSAR) studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Mol Simul 36:1067–1079

    Article  CAS  Google Scholar 

  • O’Brien SE, Popelier PLA (2001) Quantum molecular similarity. 3. QTMS descriptors. J Chem Inf Comput Sci 41:764–775

    Article  Google Scholar 

  • O'Brien SE, Popelier PLA (2002) Quantum topological molecular similarity. Part 4. A QSAR study of cell growth inhibitory properties of substituted (E)-1-phenylbut-1-en-3-ones. J Chem Soc Perkin Trans 2:478–483

    Article  Google Scholar 

  • Popelier PLA (1996) MORPHY, a program for an automated “atoms in molecules” analysis. Comput Phys Commun 93:212–240

    Article  CAS  Google Scholar 

  • Popelier PLA (1999) Quantum molecular similarity. 1. BCP space. J Phys Chem A 103:2883–2890

    Article  CAS  Google Scholar 

  • Popelier PLA, Chaudry UA, Smith PJ (2002) Quantum topological molecular similarity. Part 5. Further development with an application to the toxicity of polychlorinated dibenzo-p-dioxins (PCDDs). J Chem Soc Perkin Trans 2:1231–1237

    Article  Google Scholar 

  • Rogers D (1996) Some theory and examples of genetic function approximation with comparison to evolutionary techniques. In: Devillers J (ed) Genetic algorithm in molecular modeling. Academic, London, pp 87–107

    Chapter  Google Scholar 

  • Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure–property relationships. J Chem Inf Comput Sci 34:854–866

    Article  CAS  Google Scholar 

  • Roy K, Das RN (2011) On some novel extended topochemical atom (ETA) parameters for effective encoding of chemical information and modelling of fundamental physicochemical properties. SAR QSAR Environ Res 22:451–472

    Article  CAS  Google Scholar 

  • Roy K, Ghosh G (2004) QSTR with extended topochemical atom indices. 2. Fish toxicity of substituted benzenes. J Chem Inf Comput Sci 44:559–567

    Article  CAS  Google Scholar 

  • Roy K, Mitra I (2011) On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb Chem High Throughput Screen 14:450–474

    Article  CAS  Google Scholar 

  • Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H (2012) Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model 52:396–408

    Article  CAS  Google Scholar 

  • Roy K, Chakraborty P, Mitra I, Ojha PK, Kar S, Das RN (2013) Some case studies on application of “r m 2” metrics for judging quality of QSAR predictions: emphasis on scaling of response data. J Comput Chem 34:1071–1082

    Article  CAS  Google Scholar 

  • Roy K, Das RN, Popelier P (2014) Quantitative structure-activity relationship for toxicity of ionic liquids to Daphnia magna: aromaticity vs. lipophilicity. Chemosphere (accepted)

  • Smirnova NA, Safonova EA (2010) Ionic liquids as surfactants. Russ J Phys Chem A 84:1695–1704

    Article  CAS  Google Scholar 

  • Steudte S, Stepnowski P, Cho C-W, Thӧming J, Stolte S (2012) (Eco)toxicity of fluoro-organic and cyano-based ionic liquid anions. Chem Commun 48:9382–9384

    Article  CAS  Google Scholar 

  • Torrecilla JS, Palomar J, Lemus J, Rodríguez F (2010) A quantum-chemical-based guide to analyze/quantify the cytotoxicity of ionic liquids. Green Chem 12:123–134

    Article  CAS  Google Scholar 

  • UFT/Merck Ionic Liquids Biological Effects Database (2013) http://www.il-eco.uft.uni-bremen.de/. Accessed 22 Apr 2014

  • Wang R, Fu Y, Lai L (1997) A new atom-additive method for calculating partition coefficients. J Chem Inf Comput Sci 37:615–621

    Article  CAS  Google Scholar 

  • Williams ES, Panko J, Paustenbach DJ (2009) The European Union’s REACH regulation: a review of its history and requirements. Crit Rev Toxicol 39:553–675

    Article  Google Scholar 

  • Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  • Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KR thanks the European Commission for a Marie Curie International Incoming Fellowship (ECZ IONTOX). RND thanks CSIR, New Delhi, for a Senior Research Fellowship.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunal Roy or Paul L. A. Popelier.

Additional information

Responsible editor: Michael Matthies

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 169 kb)

ESM 2

(XLS 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, K., Das, R.N. & Popelier, P.L.A. Predictive QSAR modelling of algal toxicity of ionic liquids and its interspecies correlation with Daphnia toxicity. Environ Sci Pollut Res 22, 6634–6641 (2015). https://doi.org/10.1007/s11356-014-3845-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3845-0

Keywords

Navigation