Skip to main content

Advertisement

Log in

Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Gold mining is responsible for most Hg pollution in developing countries. The aims of this study were to assess the levels of total Hg (T-Hg) in human hair, fish, water, macrophyte, and sediment samples in the gold mining district of San Martin de Loba, Colombia, as well as to determine fish consumption-based risks for T-Hg ingestion. T-Hg levels were measured by electrothermal atomization and atomic absorption spectroscopy. The overall mean T-Hg level in hair for humans in the mining district of San Martin de Loba was 2.12 μg/g, whereas for the reference site, Chimichagua, Cesar, it was 0.58 μg/g. Mean T-Hg levels were not different when considered within localities belonging to the mining district but differed when the comparison included Chimichagua. T-Hg levels in examined locations were weakly but significantly associated with age and height, as well as with fish consumption, except in San Martin de Loba. High T-Hg concentrations in fish were detected in Pseudoplatystoma magdaleniatum, Caquetaia kraussii, Ageneiosus pardalis, Cyrtocharax magdalenae, and Triportheus magdalenae, whereas the lowest appeared in Prochilodus magdalenae and Hemiancistrus wilsoni. In terms of Hg exposure due to fish consumption, only these last two species offer some guarantee of low risk for Hg-related health problems. Water, floating macrophytes, and sediments from effluents near mining sites also had high Hg values. In mines of San Martin de Loba and Hatillo de Loba, for instance, the geoaccumulation index (Igeo) for sediments reached values greater than 6, indicating extreme pollution. In short, these data support the presence of a high Hg-polluted environment in this mining district, with direct risk for deleterious effects on the health of the mining communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez S, Kolok AS, Jimenez LF, Granados C, Palacio JA (2012) Mercury concentrations in muscle and liver tissue of fish from marshes along the Magdalena River, Colombia. Bull Environ Contam Toxicol 89(4):836–840. doi:10.1007/s00128-012-0782-9

    Article  CAS  Google Scholar 

  • Aschner M, Aschner JL (1990) Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neurosci Biobehav R 14(2):169–176. doi:10.1016/S0149-7634(05)80217-9

    Article  CAS  Google Scholar 

  • Bhuiyan MA, Parvez L, Islam M, Dampare SB, Suzuki S (2010) Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J Hazard Mater 173(1):384–392. doi:10.1016/j.jhazmat.2009.08.085

    Article  CAS  Google Scholar 

  • Boszke L, Sobczynski T, Glosinska G, Kowalski A, Siepak J (2004) Distribution of mercury and other heavy metals in bottom sediments of the Middle Odra River (Germany/Poland). Pol J Environ Stud 13(5):495–502

    CAS  Google Scholar 

  • Carvalho-Costa L, Piorski N, Willis S, Galetti JP, Ortí G (2011) Molecular systematics of the neotropical shovelnose catfish genus Pseudoplatystoma Bleeker 1862 based on nuclear and mtDNA markers. Mol Phylogenet Evol 59(1):177–194. doi:10.1016/j.ympev.2011.02.005

    Article  CAS  Google Scholar 

  • CCI-INCODER (Corporación Colombia Internacional CCI, Instituto Colombiano de Desarrollo Rural INCODER). (2007) Informe técnico regional cuencas del Magdalena, Sinú y Atrato. Convenio Bogotá (Colombia): CCIINCODER. Available at: http://www.agronet.gov.co/www/docs_agronet/2008924103627_Informetecnicoregional_magdalena_sinu_atrato.pdf

  • Cesar R, Egler S, Polivanov H, Castilhos Z, Rodrigues AP (2011) Mercury, copper and zinc contamination in soils and fluvial sediments from an abandoned gold mining area in southern Minas Gerais State, Brazil. Environ Earth Sci 64:211–222. doi:10.1007/s12665-010-0840-8

    Article  CAS  Google Scholar 

  • Chien LC, Hung TC, Choang KY, Yeh CY, Meng PJ, Shieh MJ, Han BC (2002) Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Sci Total Environ 285(1):177–185

    Article  CAS  Google Scholar 

  • Copat C, Arena G, Fiore M, Ledda C, Fallico R, Sciacca S, Ferrante M (2013a) Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: consumption advisories. Food Chem Toxicol 53:33–37. doi:10.1016/j.fct.2012.11.038

    Article  CAS  Google Scholar 

  • Copat C, Conti GO, Signorelli C, Marmiroli S, Sciacca S, Vinceti M, Ferrante M (2013b) Risk assessment for metals and PAHs by mediterranean seafood. Food Nut Sci 4(7A):10–13. doi:10.4236/fns.2013.47A002

    Article  Google Scholar 

  • Cordier S, Garel M, Mandereau L, Morcel H, Doineau P, Gosme-Seguret S, Josse D, White R, Amiel-Tison C (2002) Neurodevelopmental investigations among methylmercury-exposed children in French Guiana. Environ Res 89(1):1–11. doi:10.1006/enrs.2002.4349

    Article  CAS  Google Scholar 

  • Dickenson CA, Woodruff TJ, Stotland NE, Dobraca D, Das R (2013) Elevated mercury levels in pregnant woman linked to skin cream from Mexico. Am J Obstet Gynecol 209(2):e4–e5. doi:10.1016/j.ajog.2013.05.030

    Article  CAS  Google Scholar 

  • Duffus JH (2002) Heavy metals a meaningless term?(IUPAC Technical Report). Pure Appl Chem 74(5):793–807. doi:10.1351/pac200274050793

    Article  CAS  Google Scholar 

  • Falandysz J, Dryżałowska A, Saba M, Wang J, Zhang D (2014) Mercury in the fairy-ring of Gymnopus erythropus (Pers.) and Marasmius dryophilus (Bull.) P. Karst. mushrooms from the Gongga Mountain, Eastern Tibetan Plateau. Ecotoxicol Environ Saf 104:18–22. doi:10.1016/j.ecoenv.2014.02.012

    Article  CAS  Google Scholar 

  • Gentès S, Maury-Brachet R, Guyoneaud R, Monperrus M, André JM, Davail S, Legeay A (2013) Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France. Ecotoxicol Environ Saf 91:180–187. doi:10.1016/j.ecoenv.2013.02.001

    Article  Google Scholar 

  • Heinz GH, Hoffman DJ, Klimstra JD, Stebbins KR, Kondrad SL, Erwin CA (2011) Teratogenic effects of injected methylmercury on avian embryos. Environ Toxicol Chem 30(7):1593–1598. doi:10.1002/etc.530

    Article  CAS  Google Scholar 

  • Hortellani MA, Sarkis JE, Menezes LC, Bazante-Yamaguishi R, Pereira AS, Garcia PF, Maruyama L, Castro PM (2013) Assessment of metal concentration in the billings reservoir sediments, São Paulo State, Southeastern Brazil. J Braz Chem Soc 24(1):58–67. doi:10.1590/S0103-50532013000100009

    Article  CAS  Google Scholar 

  • Hosseini SM, Mirghaffari N, Sufiani NM, Hosseini SV, Ghasemi AF (2013) Risk assessment of the total mercury in Golden gray mullet (Liza aurata) from Caspian Sea. Intl J Aquat Biol 1(6):258–265

    Google Scholar 

  • Jain RB (2013) Effect of pregnancy on the levels of urinary metals for females aged 17–39 years old: data from National Health and Nutrition Examination Survey 2003–2010. J Toxicol Environ Health Part A 76(2):86–97. doi:10.1080/15287394.2013.738171

    Article  CAS  Google Scholar 

  • Jampeetong A, Brix H, Kantawanichkul S (2012) Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides). Aq Bot 97(1):10–16. doi:10.1016/j.aquabot.2011.10.004

    Article  CAS  Google Scholar 

  • JECFA (2003) Joint FAO/WHO Expert Committee on Food Additives. Sixty-first meeting; 10–19 June; Rome. p. 9. Summary and Conclusion, JECFA/61/SC

  • JECFA (2010) Joint FAO/WHO Expert committee on food additives. Seventy-second meeting. Rome, 16–25 February 2010. Summary and conclusions. JECFA/72/SC. Food and Agriculture Organization of the United Nations World Health Organization. Issued 16th March 2010

  • Kajiwara Y, Yasutake A, Adachi T, Hirayama K (1996) Methylmercury transport across the placenta via neutral amino acid carrier. Arch Toxicol 70(5):310–314

    Article  CAS  Google Scholar 

  • Kasper D, Botaro D, Palermo EFA, Malm O (2007) Mercúrio em peixes-fontes e contaminação. Oecol Bras 11(2):228–239

    Article  Google Scholar 

  • Kwaansa-Ansah E, Agorku S, Nriagu J (2011) Levels of total mercury in different fish species and sediments from the Upper Volta Basin at Yeji in Ghana. Bull Environ Contam Toxicol 86(4):406–409. doi:10.1007/s00128-011-0214-2

    Article  CAS  Google Scholar 

  • Lage-Pinto F, Oliveira JG, Da Cunha M, Souza CM, Rezende CE, Azevedo RA, Vitória AP (2008) Chlorophyll fluorescence and ultrastructural changes in chloroplast of water hyacinth as indicators of environmental stress. Environ Exp Bot 64(3):307–313. doi:10.1016/j.envexpbot.2008.07.007

    Article  CAS  Google Scholar 

  • Lebel J, Mergler D, Branches F, Lucotte M, Amorim M, Larribe F, Dolbec J (1998) Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin. Environ Res 79(1):20–32. doi:10.1006/enrs.1998.3846

    Article  CAS  Google Scholar 

  • Lecce SA, Pavlowsky RT (2014) Floodplain storage of sediment contaminated by mercury and copper from historic gold mining at Gold Hill, North Carolina, USA. Geomorphology 206:122–132

    Article  Google Scholar 

  • Llop S, Guxens M, Murcia M, Lertxundi A, Ramon R, Riaño I, Rebagliato M, Ibarluzea J, Tardon A, Sunyer J, Ballester F (2012) Prenatal exposure to mercury and infant neurodevelopment in a multicenter cohort in Spain: study of potential modifiers. Am J Epidemiol 175(5):451–465. doi:10.1093/aje/kwr328

    Article  Google Scholar 

  • Lu X, Kruatrachue M, Pokethitiyook P, Homyok K (2004) Removal of cadmium and Zinc by Water Hyacinth Eichhorrnia crassipes. Sci Asia 30:93–103

    Article  CAS  Google Scholar 

  • Marrugo-Negrete J, Benitez LN, Olivero-Verbel J (2008) Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in northern Colombia. Arch Environ Contam Toxicol 55(2):305–316. doi:10.1007/s00244-007-9129-7

    Article  CAS  Google Scholar 

  • Marrugo-Negrete J, Benítez LN, Olivero-Verbel J, Lans E, Gutierrez FV (2010) Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia. Inter J Environ Health Res 20(6):451–459. doi:10.1080/09603123.2010.499451

    Article  CAS  Google Scholar 

  • Martinez-Finley EJ, Aschner M (2014) Recent advances in mercury research. Curr Environ Health Rep 1(2):163–171. doi:10.1007/s40572-014-0014-z

    Article  Google Scholar 

  • McAloon KM, Mason RP (2003) Investigations into the bioavailability and bioaccumulation of mercury and other trace metals to the sea cucumber, Sclerodactyla briareus, using in vitro solubilization. Mar Pollut Bull 46(12):1600–1608. doi:10.1016/S0025-326X(03)00326-6

    Article  CAS  Google Scholar 

  • Mechora Š, Germ M, Stibilj V (2014) Monitoring of selenium in macrophytes—the case of Slovenia. Chemosphere 111:464–470. doi:10.1016/j.chemosphere.2014.03.133

    Article  CAS  Google Scholar 

  • Miller MB, Gustin MS, Eckley CS (2011) Measurement and scaling of air–surface mercury exchange from substrates in the vicinity of two Nevada gold mines. Sci Total Environ 409(19):3879–3886. doi:10.1016/j.scitotenv.2011.05.040

    Article  CAS  Google Scholar 

  • Mishra KK, Raí UN, Prakash O (2007) Bioconcentration and phytotoxicity of Cd in Eichhornia crassipes. Environ Monit Assess 130:237–243. doi:10.1007/s10661-006-9392-5

    Article  CAS  Google Scholar 

  • Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geojournal 2(3):108–118

    Google Scholar 

  • Olivero-Verbel J, Caballero-Gallardo K (2013) Nematode and mercury content in freshwater fish belonging to different trophic levels. Parasitol Res 112(6):2187–2195. doi:10.1007/s00436-013-3378-3

    Article  Google Scholar 

  • Olivero-Verbel J, Caballero-Gallardo K, Negrete-Marrugo J (2011) Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, North of Colombia. Biol Trace Elem Res 144(1–3):118–132. doi:10.1007/s12011-011-9046-5

    Article  CAS  Google Scholar 

  • Olivero-Verbel J, Caballero-Gallardo K, Torres-Fuentes N (2009) Assessment of mercury in muscle of fish from Cartagena Bay, a tropical estuary at the north of Colombia. Inter J Environ Health Res 19(5):343–355. doi:10.1080/09603120902749090

    Article  CAS  Google Scholar 

  • Qiu G, Feng X, Wang S, Fu X, Shang L (2009) Mercury distribution and speciation in water and fish from abandoned Hg mines in Wanshan, Guizhou province, China. Sci Total Environ 407(18):5162–5168. doi:10.1016/j.scitotenv.2009.06.007

    Article  CAS  Google Scholar 

  • Ralston NV, Raymond LJ (2010) Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 278(1):112–23. doi:10.1016/j.tox.2010.06.004

    Article  CAS  Google Scholar 

  • Richardson M (1996) The safety of dental amalgam, ISBN 0-662-24873-2. Minister of Health, Canada

    Google Scholar 

  • Sadagoparamanujam V, Wilson DT, Ramanujam CL, Lederman RP, Grady JJ, Alcock NW (2011) Mercury exposure through diet in pregnant women and women of childbearing age. Toxicol Environ Chem 93(10):2098–2110. doi:10.1080/02772248.2011.625621

    Article  CAS  Google Scholar 

  • Sholupov S, Pogarev S, Ryzhov V, Mashyanov N, Stroganov A (2004) Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples. Fuel Process Technol 85(6):473–485. doi:10.1016/j.fuproc.2003.11.003

    Article  CAS  Google Scholar 

  • Silbernagel SM, Carpenter DO, Gilbert SG, Gochfeld M, Groth E, Hightower JM, Schiavone FM (2011) Recognizing and preventing overexposure to methylmercury from fish and seafood consumption: information for physicians. J Toxicol 2011:1–7. doi:10.1155/2011/983072

    Article  Google Scholar 

  • Sonne C, Leifsson PS, Dietz R (2013) Liver and renal lesions in mercury-contaminated narwhals (Monodon monoceros) from North West Greenland. Toxicol Environ Chem 95(3):1–14. doi:10.1080/02772248.2013.783666

    Article  CAS  Google Scholar 

  • Tomiyasu T, Kono Y, Kodamatani H, Hidayati N, Rahajoe JS (2013) The distribution of mercury around the small-scale gold mining area along the Cikaniki river, Bogor, Indonesia. Environ Res 125:12–19. doi:10.1016/j.envres.2013.03.015

    Article  CAS  Google Scholar 

  • US-EPA (1989) Risk Assessment Guidance for Superfund, vol. I. Human Health Evaluation Manual (Part A), Interim Final. EPA 540/1–89/002. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US-EPA (1994) Methods 245.1 for determination of mercury in water. U.S. Environmental protection Agency. Cincinnati. Ohio

  • US-EPA (2000) Guidance for Assessing Chemical Contamination Data for Use in Fish Advisories, vol. II. Risk Assessment and Fish Consumption Limits EPA/823-B94-004. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Veiga M (2010) Antioquia, Colombia: the world’s most polluted place by mercury: impressions from two field trips. United Nations Industrial Development Organization, Vienna, pp 1–24

    Google Scholar 

  • Vesk PA, Nockolds CE, Allaway WG (1999) Metal localization in water hyacinth root from an urban rainyland. Plant Cell Environ 22:149–158

    Article  Google Scholar 

  • Woods JS, Heyer NJ, Russo JE, Martin MD, Pillai PB, Farin FM (2013) Modification of neurobehavioral effects of mercury by genetic polymorphisms of metallothionein in children. Neurotoxicol Teratol 39:36–44. doi:10.1016/j.ntt.2013.06.004

    Article  CAS  Google Scholar 

  • World Health Organization (1991) Inorganic mercury: environmental health criteria 118, in International Programme on Chemical Safety. World Health Organization, Geneva

    Google Scholar 

  • Zhu L, Yan B, Wang L, Pan X (2012) Mercury concentration in the muscle of seven fish species from Chagan Lake, Northeast China. Environ Monit Assess 184(3):1299–1310. doi:10.1007/s10661-011-2041-7

    Article  CAS  Google Scholar 

  • Zhu YL, Zayed AM, Qian JH, De Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II. Water Hyacinth. J Env Qual 28(1):339–344. doi:10.2134/jeq1999.00472425002800010042x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Program to Support Research Groups, sponsored by the Vice-Rectory for Research of the University of Cartagena (2013–2014); the Ph. D Program in Environmental Toxicology at the same institution; the National Program for Doctoral Formation (COLCIENCIAS, 567–2012); the Government of Bolivar State, Colombia; and Leonor Cervantes.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Olivero-Verbel.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivero-Verbel, J., Caballero-Gallardo, K. & Turizo-Tapia, A. Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia). Environ Sci Pollut Res 22, 5895–5907 (2015). https://doi.org/10.1007/s11356-014-3724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3724-8

Keywords

Navigation