Skip to main content

Advertisement

Log in

Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Apart from the conventional polyethylene and the bio-based or mainly bio-based biodegradable in soil mulching films, polyethylene mulching films of controlled degradation in soil are already used in agriculture. The use of special pro-oxidants as additives is expected to accelerate the abiotic oxidation and the subsequent chain scission of the polymer under specific UV radiation or thermal degradation conditions, according to the literature. The role of pro-oxidants in the possible biodegradation of polyethylene has been theoretically supported through the use of controlled laboratory conditions. However, results obtained in real soil conditions, but also several laboratory test results, are not supporting these claims and the issue remains disputed. Mulching films made of linear low-density polyethylene (LLDPE) with pro-oxidants, after being used for one cultivation period in an experimental field with watermelon cultivation, were buried in the soil under real field conditions. This work presents the analysis of the degradation of the mulching films during the cultivation period as compared to the corresponding changes after a long soil burial period of 8.5 years. The combined effects of critical factors on the photochemical degradation of the degradable mulching LLDPE films with pro-oxidants under the cultivation conditions and their subsequent further degradation behaviour in the soil are analysed by testing their mechanical properties and through spectroscopic and thermal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abrusci C, Pablos JL, Corrales T, López-Marín J, Marín I, Catalina F (2011) Int Biodeter Biodegr 65:451–459

    Article  CAS  Google Scholar 

  • APME, Federchimica Assoplast, BPF, Syndicat des producteur de matieres plastiques. Biodegradable plastics. October 2001

  • Arkatkar A, Arutchelvi J, Sudhakar M, Bhaduri S, Uppara PV, Doble M (2009) TOENVIEJ 2:68–80

    Article  CAS  Google Scholar 

  • Arnaud R, Dabin P, Lemaire J, Al-Malaika S, Chohan S, Coker M, Scott G, Fauve A, Maarooufi A (1994) Polym Degrad Stab 46:211–224

    Article  CAS  Google Scholar 

  • Benítez A, Sánchez JJ, Arnal ML, Müller AJ, Rodríguez O, Morales G (2013) Polym Degrad Stabil 98:490–501

    Article  Google Scholar 

  • Bhaskar JS, Gopalakrishnarao P (2010) Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, northeastern India. J Mod Phys 1:206–210

    Article  Google Scholar 

  • Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott G (2003) Polym Degrad Stab 81(3):441–452

    Article  CAS  Google Scholar 

  • Briassoulis D (2004) J Polym Environ 12:65–81

    Article  CAS  Google Scholar 

  • Briassoulis D, Dejean C (2010) J Polym Environ 18(3):384–400

    Article  CAS  Google Scholar 

  • Briassoulis D, Dejean C, Picuno P (2010a) J Polym Environ 18(3):364–383

    Article  CAS  Google Scholar 

  • Briassoulis D, Hiskakis M, Scarascia G, Picuno P, Delgado C, Dejean C (2010b) QAS 2(2):93–104

    Google Scholar 

  • Briassoulis D, Hiskakis M, Babou E, Antiohos S, Papadi C (2012) Waste Manag 32(6):1075–90

    Article  CAS  Google Scholar 

  • Broska R, Rychly J (2001) Polym Degrad Stab 72:271–278

    Article  CAS  Google Scholar 

  • Chandra R, Rustgi R (1998) Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  • Chiellini E, Corti A, Swift G, 7th World Conference on Biodegradable Polymers & Plastics, 2002 Tirrenia (Pisa), Italie, 4–8 Juin.

  • Chiellini E, Corti A, Antone S D, Baciu R (2006) Polym Degrad Stabil 1–9.

  • Coates J. Interpretation of infrared spectra, a practical approach, in Encyclopedia of analytical chemistry. R.A. Meyers (Ed.) pp. 10815–10837. John Wiley & Sons Ltd, Chichester, 2000

  • Corti A, Sudhakar M, Chiellini E (2012) J Polym Environ 20(4):1007–1018

    Article  CAS  Google Scholar 

  • Dannenberg EM, Jordan ME, Cole HM (1958) Peroxide crosslinked carbon black polyethylene compositions. J Polym Sci 31(122):127–153

    Article  CAS  Google Scholar 

  • David C, Trojan M, Daro A (1992) Polym Degrad Stabil 37:233–245

    Article  CAS  Google Scholar 

  • David C, Kesel C, Lefebvre F, Weiland M (1994) Macromol Mater Eng 216:21–35

    CAS  Google Scholar 

  • Eco Mark Office, Japan Environment Association (official web site: http://www.ecomark.jp/english/index.html), Eco Mark Product Category No. 141. Biodegradable plastic products version 1.0, certification criteria, July 2, 2007, available online: http://www.ecomark.jp/english/pdf/141eC1.pdf (date of last access: March 2012).

  • EN 13432: 2000/AC:2005. European Committee for Standardization. Packaging—requirements for packaging recoverable through composting and biodegradation-test scheme and evaluation criteria for the final acceptance of packaging, European Standard. European Committee for Standardization, Brussels, Belgium 2005

  • European Bioplastics, official web-site: http://www.european-bioplastics.org/, date of last access: 29-3-2012

  • Feuilloley P (2004) La Recherche 374:52–4

    Google Scholar 

  • Feuilloley P, César G, Benguigui L, Grohens Y, Pillin I, Bewa H, Lefaux S, Jamal M (2005) J Polym Environ 13(4):349–355

    Article  CAS  Google Scholar 

  • Flooded soils, MicrobeWiki, available online at: https://microbewiki.kenyon.edu/index.php/Flooded_soils, page last modified at 22 April 2011

  • Fritz J (2003) Macromol Symp 197:397–409

    Article  CAS  Google Scholar 

  • Ghosh J. Role of innovation in additives technology to meet new demands of agricultural plastics. Presented to Plasticulture’05 32nd National Agricultural Plastics Congress March 5–8, 2005 Charleston, South Carolina

  • González A, Fernández JA, Martín P, Rodríguez R, López J, Bañón S, Franco JA (2003) Behaviour of biodegradable film for mulching in open-air melon cultivation in south-east Spain. Kuratorium fur Technik und Bauwesen in der Landwirtschaft, KTBL 414:71–77

    Google Scholar 

  • Gross RA, Kalra B (2002) Green Chem 297:803–807

    CAS  Google Scholar 

  • Hakkarainen M, Albertsson AC (2004) Adv Polym Sci 169:177–199

    Article  CAS  Google Scholar 

  • Halley P, Rutgers R, Coombs S, Gralton J, Jenkins M, Beh H, Griffin K, Jayasekara R, Lonergan G (2001) Starch 53:362–367

    Article  CAS  Google Scholar 

  • Hiskakis M, Babou E, Briassoulis D (2011) J Polym Environ 19:887–907

    Article  CAS  Google Scholar 

  • Hsu YC, Weir MP, Truss RW, Garvey CJ, Nicholson TM, Halley PJ (2012) Polymer 53(12):2385–93

    Article  CAS  Google Scholar 

  • ASTM International Standards Worldwide, official web-site: www.astm.org, date of last access: March 2012

  • ISO 14852:1999/Cor 1:2005. Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium—method by analysis of evolved carbon dioxide

  • ISO 17556:2003. Plastics—determination of the ultimate aerobic biodegradability in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved/2003

  • Itavaara M, Vikman M (1995) Chemosphere 31:4359–4373

    Article  CAS  Google Scholar 

  • Jakubowicz I (2003) Polym Degrad Stabil 80(1):39–43

    Article  CAS  Google Scholar 

  • Kalus J 2007. Oxo-degradable polyethylene films. Master Thesis, Tomas Bata University in Zlin Faculty of technology

  • Kaplan DL, Mayer JM, Greenberger M, Gross RA, McCarthy S (1994) Polym Degrad Stabil 45:165–172

    Article  CAS  Google Scholar 

  • Karlsson S, Albertsson AC (1998) Polym Eng Sci 38:1251–1253

    Article  CAS  Google Scholar 

  • Karlsson S, Hakkarainen M, Albertsonn AC (1997) Macromolecules 30:7721–7728

    Article  CAS  Google Scholar 

  • Khabbaz F, Albertsson A, Karlsson S (1999) Polym Degrad Stab 63:127–138

    Article  CAS  Google Scholar 

  • Koutny M, Vaclavkova T, Matisova-Rychla L, Rychly J (2008) Polym Degrad Stab 93:1515–1519

    Article  CAS  Google Scholar 

  • Krzan A, Hemjinda S, Miertus S, Corti A, Chiellini E (2006) Polym Degrad Stabil 91:2819–2833

    Article  CAS  Google Scholar 

  • Kyrikou I, Briassoulis D (2007) J Polym Environ 15(2):125–150

    Article  CAS  Google Scholar 

  • Kyrikou I, Briassoulis D, Hiskakis M, Babou E (2011) Polym Degrad Stab 96(12):2237–2252

    Article  CAS  Google Scholar 

  • Lamont WJ (1996) HortTech 6(3):150–154

    Google Scholar 

  • Lefaux S, Manceau A, Benguigui L, Campistron I, Laguerre A, Laulier M, Leignel V, Tremblin G (2004) C R C 7(2):97–101

    Article  CAS  Google Scholar 

  • Lucas N 2007. Study and development of a new method of bioassimilation evaluation: utilisation of stable isotopes for labelling the microbial biomass. PhD thesis, Institut National Polytechnique de Toulouse

  • Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Chemosphere 73:429–442

    Article  CAS  Google Scholar 

  • Martienssen W, Warlimont H (2005) Springer handbook of condensed matter and materials data/part 3.3 classes of materials-polymers. Springer Berlin, Heidelberg, p 484

    Book  Google Scholar 

  • Martin-Closas L and Pelacho AM (2011) Agronomic potential of biopolymer films. In: Biopolymers—new materials for sustainable films and coatings (ed D. Plackett), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781119994312.ch13

  • Martin-Closas L, Picuno P, Rodriguez D, Pelacho AM (2008) Acta Hort (ISHS) 801:275–282

    CAS  Google Scholar 

  • Massardier-Nageotte V, Pestre C, Cruard-Pradet T, Bayard R (2006) Polym Degrad Stabil 91(3):620–627

    Article  CAS  Google Scholar 

  • Matsumaga M, Whitney PJ (2000) Polym Degrad Stab 70:325–332

    Article  Google Scholar 

  • Mohan J. Organic spectroscopy: principles and applications. Publisher CRC Press, 2004 p548; ISBN 0849339529, 9780849339523

  • Nayak PL (1999) Rev Macromol Chem Phys 39:481–505

    Article  Google Scholar 

  • NF U52-001, 2005. Biodegradable materials for use in agriculture and horticulture-mulching products—requirements and test methods/2005

  • Ohtake Y (1998) J Appl Polym Sci 70:1643–1659

    Article  CAS  Google Scholar 

  • Ohtake Y, Kobayashi T, Asabe H, Murakami N (1995) J Appl Polym Sci 56:1789–96

    Article  Google Scholar 

  • Ojeda T, Freitas A, Dalmolin E, Pizzol MD, Vignol L, Melnik J, Jacques R, Bento F, Camargo F (2009) Polym Degrad Stabil 94(12):2128–33

    Article  CAS  Google Scholar 

  • Olabisi O, Robeson LM, Shaw MT (1979) Polymer–polymer miscibility. Academic, New York

    Google Scholar 

  • Picuno P, Tortora A, Capobianco RL (2011) Landsc Urban Plan 100(1–2):45–56

    Article  Google Scholar 

  • Ramanujam M 2013. Photo-oxidation and weathering of LDPE studied by surface and bulk analysis. Dissertation work, Technical University of Berlin, Faculty II, Mathematics and Natural Sciences, Berlin

  • Rasmussen J, Jensen PH, Holm PE, Jacobsen OS (2004) J Microbiol Meth 57:151–6

    Article  CAS  Google Scholar 

  • Reddy MM, Gupta RK, Bhattacharya SN, Parthasarathy R (2008) J Polym Environ 16:27–34

    Article  CAS  Google Scholar 

  • Roy PK, Surekha P, Rajagopal C, Choudhary V (2008) J Appl Polym Sci 108:2726–2733

    Article  CAS  Google Scholar 

  • Russo G, Candura A, Scarascia-Mugnozza G (2005) Acta Hort (ISHS) 691:717–724

    Google Scholar 

  • Sangwan P, Dean K 2011. Degradable plastics packaging materials: assessment and implication for the Australian environment. Final Report, Materials Science and Engineering, CSIRO—EP114268, 8th June 2011, Australia

  • Scott G, Gilead D, 1995. Degradable polymers: principles and applications, Chapter 13. Chapman & Hall

  • Scott G, Wiles DM (2001) Biomacromolecules 2(3):615–22

    Article  CAS  Google Scholar 

  • Scott G, University A, Birmingham UK (1999) Macromol Symp 144:113–125

    Article  CAS  Google Scholar 

  • Singh B, Sharma N (2008) Polym Degrad Stabil 93(3):561–84

    Article  CAS  Google Scholar 

  • Tamboli SM, Mhaske ST, Kale DD (2004) Crosslinked polyethylene. Indian J Chem Technol 11:853–864

    CAS  Google Scholar 

  • Viswanath V 2010. Degradation studies of polypropylene fibers and nonwovens with prodegradant additives. A thesis submitted to the Graduate Faculty of North Carolina State University, Textile Engineering, URL: http://repository.lib.ncsu.edu/ir/bitstream/1840.16/6302/1/etd.pdf

  • Wang XL, Yang KK, Wang YZ (2003) J Macromol Sci Pol Rev 43:385–409

    Article  CAS  Google Scholar 

  • Wiles DM, Scott G (2006) Polym Degrad Stabil 91(7):1581–92

    Article  CAS  Google Scholar 

  • Wunderlich B (1990) Thermal analysis. Academic Press, 417–431

  • Xiao C, Lu Y, Liu H, Zhang L (2000) J Macromol Sci Pur 37:1663–1675

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Environment-Pythagoras II Program of the General Secretariat for Research and Technology, 2005-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetres Briassoulis.

Additional information

Responsible editor: Philippe Garrigues

Ioanna Kyrikou works at the time of the research project work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briassoulis, D., Babou, E., Hiskakis, M. et al. Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions. Environ Sci Pollut Res 22, 2584–2598 (2015). https://doi.org/10.1007/s11356-014-3464-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3464-9

Keywords

Navigation