Skip to main content
Log in

Multivariate optimization of the decolorization process by surface modified biomaterial: Box–Behnken design and mechanism analysis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A natural biosorbent obtained from Pyracantha coccinea was modified with an anionic surfactant to facilitate its dye removal ability. Modified biosorbent was successfully employed for the decolorization of Methyl Violet (MV)-contaminated solutions. A three-variable Box–Behnken design for response surface methodology was used to examine the function of independent operating variables. Optimum pH and biosorbent amount were found to be 6.0 and 0.055 g, respectively. The effects of temperature and ionic strength on the dye removal performance of biosorbent were also investigated. A biosorption equilibrium was attained within 30 min and experimental data fitted well to the pseudo-second-order model. The Langmuir isotherm model fitted adequately to the equilibrium data. The maximum monolayer biosorption capacity of the modified biosorbent was found to be 254.88 mg g−1. Good biosorption yields were also recorded in continuous biosorption system. Ion exchange and complexation could be suggested as possible mechanisms for the biosorption. The developed modified biosorbent was regenerated up to 80.30 % by 0.005 M HCl. At real wastewater conditions, it has 86.23 ± 0.21 and 94.51 ± 1.09 % dye removal yields in batch and column systems, respectively. Modified biomaterial can be used as an effective biosorbent for the removal of MV dye from aqueous solution with high biosorption performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmaruzzaman M, Gupta VK (2011) Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind Eng Chem Res 50:13589–13613

    Article  CAS  Google Scholar 

  • Akar T, Divriklioglu M (2010) Biosorption applications of modified fungal biomass for decolorization of Reactive Red 2 contaminated solutions: batch and dynamic flow mode studies. Bioresour Technol 101:7271–7277

    Article  CAS  Google Scholar 

  • Akar T, Anilan B, Gorgulu A, Akar ST (2009a) Assessment of cationic dye biosorption characteristics of untreated and non-conventional biomass: Pyracantha coccinea berries. J Hazard Mater 168:1302–1309

    Article  CAS  Google Scholar 

  • Akar T, Tosun I, Kaynak Z, Kavas E, Incirkus G, Akar ST (2009b) Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye. J Hazard Mater 171:865–871

    Article  CAS  Google Scholar 

  • Aksu Z, Çağatay ŞŞ (2006) Investigation of biosorption of Gemazol Turquise Blue-G reactive dye by dried Rhizopus arrhizus in batch and continuous systems. Sep Purif Technol 48:24–35

    Article  CAS  Google Scholar 

  • Aksu Z, Isoglu IA (2007) Use of dried sugar beet pulp for binary biosorption of Gemazol Turquoise Blue-G reactive dye and copper(II) ions: equilibrium modeling. Chem Eng J 127:177–188

    Article  CAS  Google Scholar 

  • Aksu Z, Çağatay ŞŞ, Gönen F (2007) Continuous fixed bed biosorption of reactive dyes by dried Rhizopus arrhizus: determination of column capacity. J Hazard Mater 143:362–371

    Article  CAS  Google Scholar 

  • Aksu Z, Tatli AI, Tunc O (2008) A comparative adsorption/biosorption study of Acid Blue 161: effect of temperature on equilibrium and kinetic parameter. Chem Eng J 142:23–39

    Article  CAS  Google Scholar 

  • Allen SJ, Gan Q, Matthews R, Johnson PA (2005) Mass transfer processes in the adsorption of basic dyes by peanut hulls. Ind Eng Chem Res 44:1942–1949

    Article  CAS  Google Scholar 

  • Anjaneya O, Santoshkumar M, Anand SN, Karegoudar TB (2009) Biosorption of acid violet dye from aqueous solutions using native biomass of a new isolate of Penicillium sp. Int Biodeter Biodegr 63:782–787

    Article  CAS  Google Scholar 

  • Aravindhan R, Rao JR, Nair BU (2007) Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. J Hazard Mater 142:68–76

    Article  CAS  Google Scholar 

  • Asgher M, Bhatti HN (2012) Evaluation of thermodynamics and effect of chemical treatments on sorption potential of Citrus waste biomass for removal of anionic dyes from aqueous solutions. Ecol Eng 38:79–85

    Article  Google Scholar 

  • Barron-Zambrano J, Szygula A, Ruiz M, Sastre AM, Guibal E (2010) Biosorption of reactive black 5 from aqueous solutions by chitosan: column studies. J Environ Manag 91:2669–2675

    Article  CAS  Google Scholar 

  • Belala Z, Jeguirim M, Belhachemi M, Addoun F, Trouvé G (2011) Biosorption of basic dye from aqueous solutions by date stones and palm-trees waste: kinetic, equilibrium and thermodynamic studies. Desalination 271:80–87

    Article  CAS  Google Scholar 

  • Bhatnagar A, Vilar VJP, Botelho CMS, Boaventura RAR (2010) Coconut-based biosorbents for water treatment—a review of the recent literature. Adv Colloid Interface Sci 160:1–15

    Article  CAS  Google Scholar 

  • Bingol A, Aslan A, Cakici A (2009) Biosorption of chromate anions from aqueous solution by a cationic surfactant-modified lichen (Cladonia rangiformis (L.)). J Hazard Mater 161:747–752

    Article  CAS  Google Scholar 

  • Crini G (2008) Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigments 77:415–426

    Article  CAS  Google Scholar 

  • Daneshvar E, Kousha M, Sohrabi MS, Khataee A, Converti A (2012a) Biosorption of three acid dyes by the brown macroalga Stoechospermum marginatum: isotherm, kinetic and thermodynamic studies. Chem Eng J 195:297–306

    Article  Google Scholar 

  • Daneshvar E, Kousha M, Sohrabi MS, Khataee A, Converti A (2012b) Biosorption of three acid dyes by the brown macroalga Stoechospermum marginatum: isotherm, kinetic and thermodynamic studies. Chem Eng J 195–196:297–306

    Article  Google Scholar 

  • Dubinin M, Radushkevich L (1947) Equation of the characteristic curve of activated charcoal. Chem Zentr 1:875–890

    Google Scholar 

  • Fan H, Yang JS, Gao TG, Yuan HL (2012) Removal of a low-molecular basic dye (Azure Blue) from aqueous solutions by a native biomass of a newly isolated Cladosporium sp.: kinetics, equilibrium and biosorption simulation. J Taiwan Inst Chem Eng 43:386–392

    Article  CAS  Google Scholar 

  • Farah JY, El-Gendy NS, Farahat LA (2007) Biosorption of Astrazone Blue basic dye from an aqueous solution using dried biomass of Baker's yeast. J Hazard Mater 148:402–408

    Article  CAS  Google Scholar 

  • Fernandez ME, Nunell GV, Bonelli PR, Cukierman AL (2012) Batch and dynamic biosorption of basic dyes from binary solutions by alkaline-treated cypress cone chips. Bioresour Technol 106:55–62

    Article  CAS  Google Scholar 

  • Freundlich H (1906) Über die absorption in lösungen. Universität Leipzig, 98p

  • Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant pattern conditions. Ind Eng Chem Fundam 5:212–223

  • Hameed BH (2008) Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. J Hazard Mater 154:204–212

    Article  CAS  Google Scholar 

  • Han R, Wang Y, Yu W, Zou W, Shi J, Liu H (2007) Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column. J Hazard Mater 141:713–718

    Article  CAS  Google Scholar 

  • Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

  • Kaushik P, Malik A (2009) Fungal dye decolourization: recent advances and future potential. Environ Int 35:127–141

    Article  CAS  Google Scholar 

  • Khambhaty Y, Mody K, Basha S (2012) Efficient removal of Brilliant Blue G (BBG) from aqueous solutions by marine Aspergillus wentii: kinetics, equilibrium and process design. Ecol Eng 41:74–83

    Article  Google Scholar 

  • Kiran B, Kaushik A, Kaushik CP (2007) Response surface methodological approach for optimizing removal of Cr(VI) from aqueous solution using immobilized cyanobacterium. Chem Eng J 126:147–153

    Article  CAS  Google Scholar 

  • Kumar R, Ahmad R (2011) Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination 265:112–118

    Article  CAS  Google Scholar 

  • Kwon OJ, Yoon DH, Kim JJ (2008) Silicon-based miniaturized reformer with methanol catalytic burner. Chem Eng J 140:466–472

    Article  CAS  Google Scholar 

  • Lagergren S (1989) Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Li P, Su Y-J, Wang Y, Liu B, Sun L-M (2010) Bioadsorption of methyl violet from aqueous solution onto Pu-erh tea powder. J Hazard Mater 179:43–48

    Article  CAS  Google Scholar 

  • Liu L, Wan Y, Xie Y, Zhai R, Zhang B, Liu J (2012) The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem Eng J 187:210–216

    Article  CAS  Google Scholar 

  • Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res 37:4544–4552

    Article  CAS  Google Scholar 

  • Mall ID, Srivastava VC, Agarwal NK (2006) Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes Pigments 69:210–223

    Article  CAS  Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2011) Biosorption of reactive dye by waste biomass of Nostoc linckia. Ecol Eng 37:1589–1594

    Article  Google Scholar 

  • Montgomery DC (2005) Design and analysis of experiments, 6th edn. Wiley, New Jersey

    Google Scholar 

  • Nanseu-Njiki CP, Dedzo GK, Ngameni E (2010) Study of the removal of paraquat from aqueous solution by biosorption onto Ayous (Triplochiton schleroxylon) sawdust. J Hazard Mater 179:63–71

    Article  CAS  Google Scholar 

  • Nermeen A, El-Sersy (2007) Bioremediation of methylene blue by Bacillus thuringiensis 4 G1: application of statistical designs and surface plots for optimization. Biotechnology 6:34–39

    Article  Google Scholar 

  • Oei BC, Ibrahim S, Wang SB, Ang HM (2009) Surfactant modified barley straw for removal of acid and reactive dyes from aqueous solution. Bioresour Technol 100:4292–4295

    Article  CAS  Google Scholar 

  • Ofomaja AE (2008) Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust. Chem Eng J 143:85–95

    Article  CAS  Google Scholar 

  • Ofomaja AE, Ho Y-S (2008) Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust. Bioresour Technol 99:5411–5417

    Article  CAS  Google Scholar 

  • Ofomaja AE, Ukpebor EE, Uzoekwe SA (2011) Biosorption of Methyl violet onto palm kernel fiber: diffusion studies and multistage process design to minimize biosorbent mass and contact time. Biomass Bioenergy 35:4112–4123

    Article  CAS  Google Scholar 

  • Özcan AS, Özcan A, Tunali S, Akar T, Kiran I, Gedikbey T (2007) Adsorption potential of lead(II) ions from aqueous solutions onto Capsicum annuum seeds. Sep Sci Technol 42:137–151

    Article  Google Scholar 

  • Pouralinazar F, Yunus MAC, Zahedi G (2012) Pressurized liquid extraction of Orthosiphon stamineus oil: experimental and modeling studies. J Supercrit Fluid 62:88–95

    Article  CAS  Google Scholar 

  • Pratibha R, Malar P, Rajapriya T, Balapoornima S, Ponnusami V (2010) Statistical and equilibrium studies on enhancing biosorption capacity of Saccharomyces cerevisiae through acid treatment. Desalination 264:102–107

    Article  CAS  Google Scholar 

  • Saha PD, Chakraborty S, Chowdhury S (2012) Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder. Colloid Surf B 92:262–270

    Article  Google Scholar 

  • Saleem M, Pirzada T, Qadeer R (2005) Sorption of some azo-dyes on wool fiber from aqueous solutions. Colloid Surf A 260:183–188

    Article  CAS  Google Scholar 

  • Senturk HB, Ozdes D, Duran C (2010) Biosorption of Rhodamine 6G from aqueous solutions onto almond shell (Prunus dulcis) as a low cost biosorbent. Desalination 252:81–87

    Article  CAS  Google Scholar 

  • Sharma P, Singh L, Dilbaghi N (2009) Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box–Behnken design. J Hazard Mater 164:1024–1029

    Article  CAS  Google Scholar 

  • Tian Y, Ji C, Zhao M, Xu M, Zhang Y, Wang R (2010) Preparation and characterization of baker's yeast modified by nano-Fe3O4: application of biosorption of methyl violet in aqueous solution. Chem Eng J 165:474–481

    Article  CAS  Google Scholar 

  • Tunali Akar S, Gorgulu A, Akar T, Celik S (2011) Decolorization of Reactive Blue 49 contaminated solutions by Capsicum annuum seeds: batch and continuous mode biosorption applications. Chem Eng J 168:125–133

    Article  CAS  Google Scholar 

  • Tunali S, Ozcan A, Kaynak Z, Ozcan AS, Akar T (2007) Utilization of the Phaseolus vulgaris L. waste biomass for decolorization of the textile dye Acid Red 57: determination of equilibrium, kinetic and thermodynamic parameters. J. Environ. Sci. Health A 42:591–600

    CAS  Google Scholar 

  • Vijayaraghavan K, Lee MW, Yun Y-S (2008a) A new approach to study the decolorization of complex reactive dye bath effluent by biosorption technique. Bioresour Technol 99:5778–5785

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Won SW, Mao J, Yun YS (2008b) Chemical modification of Corynebacterium glutamicum to improve methylene blue biosorption. Chem Eng J 145:1–6

    Article  CAS  Google Scholar 

  • Walker GM, Weatherley LR (2000) Biodegradation and biosorption of acid anthraquinone dye. Environ Pollut 108:219–223

    Article  CAS  Google Scholar 

  • Wang BE, Hu YY, Xie L, Peng K (2008) Biosorption behavior of azo dye by inactive CMC immobilized Aspergillus fumigatus beads. Bioresour Technol 99:794–800

    Article  CAS  Google Scholar 

  • Weber WJ Jr, Morriss JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–39

    Google Scholar 

  • Yeddou-Mezenner N (2010) Kinetics and mechanism of dye biosorption onto an untreated antibiotic waste. Desalination 262:251–259

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Tunali Akar.

Additional information

Responsible editor: Bingcai Pan

Appendix

Appendix

Kinetic and isotherm model equations

The pseudo-first-order equation;

$$ \ln \left({q}_{\mathrm{e}}-{q}_{\mathrm{t}}\right)= \ln {q}_{\mathrm{e}}-{k}_1 t $$
(5)

The pseudo-second-order rate equation;

$$ \frac{t}{q_{\mathrm{t}}}=\frac{1}{k_2{q}_{\mathrm{e}}^2}+\frac{1}{q_{\mathrm{e}}} t $$
(6)
$$ h = {k}_2{q_{\mathrm{e}}}^2 $$
(7)

The intraparticle diffusion equation;

$$ {q}_{\mathrm{t}}={k}_{\mathrm{p}}{t}^{1/2}+ C $$
(8)

which k 1 is rate constant of pseudo-first-order biosorption (min−1), k 2 is the equilibrium rate constant of pseudo-second-order biosorption (g mg−1 min−1), q e and q t are biosorption capacity at equilibrium and at time t (mg g−1), respectively, h is the initial biosorption rate (mg g min−1), C is the intercept (mg g−1), and k p is the intraparticle diffusion rate constant (mg g−1 min−1/2).

Freundlich isotherm equation;

$$ \ln {q}_{\mathrm{e}}= \ln {K}_{\mathrm{F}}+1/ n \ln {C}_{\mathrm{e}} $$
(9)

Langmuir isotherm model;

$$ \frac{1}{q_{\mathrm{e}}}=\frac{1}{q_{\max }}+\left(\frac{1}{q_{\max }{K}_{\mathrm{L}}}\right)\frac{1}{C_{\mathrm{e}}} $$
(10)
$$ {R}_{\mathrm{L}}=\frac{1}{1+{K}_{\mathrm{L}}{C}_{\mathrm{o}}} $$
(11)

D − R isotherm model;

$$ \ln {q}_{\mathrm{e}}= \ln {q}_{\mathrm{m}}-\beta {\varepsilon}^2 $$
(12)
$$ E=1/{\left(2\beta \right)}^{1/2} $$
(13)

where q e (mol g−1) and C e (mol L−1) are the amount of biosorbed dye per unit weight of biosorbent and unbiosorbed dye concentration in solution at equilibrium, respectively, K F (L g−1) and n (dimensionless) are Freundlich constants, q max is the maximum monolayer biosorption capacity (mol g−1), K L is Langmuir constant related to the energy of biosorption (L mol−1), R L is separation factor, C o is the initial solute concentration (mol L−1), q m is the biosorption capacity (mol g−1), β is the activity coefficient related to the biosorption energy, and E (kJ mol−1) is the mean free energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akar, S.T., Sayin, F., Turkyilmaz, S. et al. Multivariate optimization of the decolorization process by surface modified biomaterial: Box–Behnken design and mechanism analysis. Environ Sci Pollut Res 21, 13055–13068 (2014). https://doi.org/10.1007/s11356-014-3245-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3245-5

Keywords

Navigation