Skip to main content

Advertisement

Log in

Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Zea mays (L.) is a crop widely cultivated throughout the world and can be considered suitable for phytomanagement due to its metal resistance and energetic value. In this study, the effect of two plant growth-promoting rhizobacteria, Ralstonia eutropha and Chryseobacterium humi, on growth and metal uptake of Z. mays plants in soils contaminated with up to 30 mg Cd kg−1 was evaluated. Bacterial inoculation increased plant biomass up to 63 % and led to a decrease of up to 81 % in Cd shoot levels (4–88 mg Cd kg−1) and to an increase of up to 186 % in accumulation in the roots (52–134 mg Cd kg−1). The rhizosphere community structure changed throughout the experiment and varied with different levels of Cd soil contamination, as revealed by molecular biology techniques. Z. mays plants inoculated with either of the tested strains may have potential application in a strategy of soil remediation, in particular short-term phytostabilization, coupled with biomass production for energy purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An YJ (2004) Soil ecotoxicity assessment using cadmium sensitive plants. Environ Pollut 127:21–26

    Article  CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agriculture importance. Biotechnol Lett 32:1559–1570

    Article  CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents. Environ Sci Technol 3:860–865

    Article  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 4:198–207

    Article  Google Scholar 

  • Cui Y, Wang Q (2006) Physiological responses of maize to elemental sulphur and cadmium stress. Plant Soil Environ 52:523–529

    CAS  Google Scholar 

  • De Koe T (1994) Agrostis castellana and Agrostis delicatula on heavy metal and arsenic enriched sites in NE Portugal. Sci Total Environ 145:103–109

    Article  Google Scholar 

  • Dhugga KS (2007) Maize biomass yield and composition for biofuels. Crop Sci 47:2211–2227

    Article  CAS  Google Scholar 

  • EUGRIS. Portal for soil and water management in Europe (http://www.eugris.info)

  • Fässler E, Robinson BH, Gupta SK, Schulin R (2010) Uptake and allocation of plant nutrients and Cd in maize, sunflower and tobacco growing on contaminated soil and the effect of soil conditioners under field conditions. Nutr Cycl Agroecosyst 87:339–352

    Article  Google Scholar 

  • Förstner U (1995) Land contaminations by metals: global scope and magnitude of problem. In: Allen HE, Huang CP, Bailey GW, Bowers ER (eds) Metal speciation and contamination of soil. CRC Press, Boca Raton, pp 1–33

    Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1996) Changes in microbial community structure during long term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28:55–63

    Article  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  Google Scholar 

  • Grandlic CJ, Mendez MO, Chorover J, Machado B, Maier RM (2008) Plant growth promoting bacteria for phytostabilisation of mine tailings. Environ Sci Technol 42:2079–2084

    Article  CAS  Google Scholar 

  • Gunawardana B, Singhal N, Johnson A (2010) Amendments and their combined application for enhanced copper, cadmium, lead uptake by Lolium perenne. Plant Soil 329:283–294

    Article  CAS  Google Scholar 

  • Henriques IS, Alves A, Tacão M, Almeida A, Cunha A, Correia A (2006) Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuar Coast Shelf Sci 68:139–148

    Article  Google Scholar 

  • Houba VJG, van der Lee JJ, Novozamsky I (1995) Soil analysis procedure. Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Syllabus, Wageningen

    Google Scholar 

  • Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Article  CAS  Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    Article  CAS  Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    Article  CAS  Google Scholar 

  • Khan A (2005) Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  Google Scholar 

  • Khan S, Hesham AL, Qiao M, Rehman S, He JZ (2010) Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res 17:288–296

    Article  CAS  Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32

    Article  CAS  Google Scholar 

  • Kozdrój J (1995) Microbial responses to single or successive soil contamination with Cd or Cu. Soil Biol Biochem 27:1459–1465

    Article  Google Scholar 

  • Lagriffoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays, L.). Plant Soil 200:241–250

    Article  CAS  Google Scholar 

  • Li K, Ramakrishna W (2011) Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J Hazard Mater 189:531–539

    Article  CAS  Google Scholar 

  • Li NY, Li ZA, Zhuang P, Zou B, McBride M (2009) Cadmium uptake from soil maize with intercrops. Water Air Soil Pollut 199:45–56

    Article  CAS  Google Scholar 

  • Lorenz N, Hintemann T, Kramarewa T, Katayama A, Yasuta T, Marschner P, Kandeler E (2006) Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol Biochem 38:1430–1437

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  • Marques APGC, Pires C, Moreira H, Rangel AOSS, Castro PML (2010) Assessment of the plant growth promotion abilities of six bacterial species using Zea mays as indicator plant. Soil Biol Biochem 42:1229–1235

    Article  CAS  Google Scholar 

  • Marques APGC, Moreira H, Franco AR, Rangel AOSS, Castro PML (2013) Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria—effects on phytoremediation strategies. Chemosphere 92:74–83

    Article  CAS  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood M, Lesage E, Tack FM (2005) Potential of Brassica rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61:561–572

    Article  CAS  Google Scholar 

  • Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Witters N, Thewys T, Tack FM (2010) The use of bio-energy crops (Zea mays) for “phytoattenuation” of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    Article  CAS  Google Scholar 

  • Mench M, Martin E (1991) Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil 132:187–196

    CAS  Google Scholar 

  • Miransari M (2011) Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92:875–885

    Article  CAS  Google Scholar 

  • Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K, Straźyńska K, Stachowiak A (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy 34:1410–1418

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uiterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Naees M, Ali Q, Shahbaz M, Ali F (2011) Role of rhizobacteria in phytoremediation of heavy metals: an overview. Int Res J Plant Sci 8:220–232

    Google Scholar 

  • Pierzinsky GM, Sims JT, Vance GF (2000) Soils and environmental quality. CRC Press, Boca Raton

    Google Scholar 

  • Pires C (2010) Bacteria in heavy metal contaminated soil: diversity, tolerance and use in remediation systems, PhD Thesis, Cranfield University, UK

  • Podlesakova E, Nemecek J, Vacha R (2001) Mobility and bioavailability of trace metals in soils. In: Trace elements in soil. Bioavailability, flux and transfer, I K Iskandar and M B Kirkham USA

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:14–28

    Article  Google Scholar 

  • Ranathunge K, Steudle E, Lafitte R (2005) A new precipitation technique provides evidence for the permeability of Casparin bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.). Plant Cell Environ 28:1450–1462

    Article  CAS  Google Scholar 

  • Ruiz E, Rodríguez L, Alonso-Azcaráte J, Rincón J (2009) Phytoextraction of metal polluted soils around a Pb-Zn mine by crop plants. Int J Phytorem 11:360–384

    Article  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21

  • Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50:1267–1280

    CAS  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  Google Scholar 

  • Sheng X, Sun L, Huang Z, He L, Zhang W, Chen Z (2012) Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. J Environ Manag 103:58–64

    Article  CAS  Google Scholar 

  • Shi G, Cai Q (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27:555–561

    Article  CAS  Google Scholar 

  • Teer Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • Thewys T, Witters N, Van Slycken S, Ruttens A, Meers E, Tack FM, Vangronsveld J (2010) Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part I: effect on the farmer’s income. Int J Phytorem 12:650–662

    Article  CAS  Google Scholar 

  • Thomas GW (1982) Exchangeable cations. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. American Society of Agronomy and Soil Science Inc., Madison, pp 159–165

    Google Scholar 

  • Toppi SL, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids is soil environments. J Soil Sci Plant Nutr 10:268–292

    Article  Google Scholar 

  • Wallinga I, Vark W, Houba VJG, Lee JJ (1989) Plant analysis procedures. Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen, Syllabus

    Google Scholar 

  • Wang M, Zou J, Duan X, Jiang W, Liu D (2007) Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresour Technol 98:82–88

    Article  CAS  Google Scholar 

  • Wójcik M, Tukiendorf A (2005) Cadmium uptake, localization and detoxification in Zea mays. Biol Plant 49:237–245

    Article  Google Scholar 

  • Wuana RA, Okieimen FE (2010) Phytoremediation potential of maize (Zea mays L.): a review. Afr J Gen Agric 6:275–287

    Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia and Fundo Social Europeu (III Quadro Comunitário de apoio), research grants to Helena Moreira (SFRH/BD/64584/2009), Ana Marques (SFRH/BPD/34585/2007), and Albina Franco (SFRH/BD/47722/2008), and by national funds through FCT—Fundação para a Ciência e Tecnologia under the project PEst-OE/EQB/LA0016/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula M. L. Castro.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, H., Marques, A.P.G.C., Franco, A.R. et al. Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environ Sci Pollut Res 21, 9742–9753 (2014). https://doi.org/10.1007/s11356-014-2848-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2848-1

Keywords

Navigation