Skip to main content
Log in

Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahumada R, Vargas J, Pagliero L (2006) Simple model of dissolved oxygen consumption in a bay within high organic loading: an applied remediation tool. Environ Monit Assess 118:179–193. doi:10.1007/s10661-006-1489-3

    Article  CAS  Google Scholar 

  • Altunkaynak A, Ozger M, Cakmakci M (2005) Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn. Ecol Model 189:436–446. doi:10.1016/j.ecolmodel.2005.03.007.

    Article  Google Scholar 

  • Ansa-Asarea OD, Marra IL, Cresser MS (1999) Evaluation of cycling patterns of dissolved oxygen in a tropical lake as an indicator of biodegradable organic pollution. Sci Total Environ 231:145–158. doi:10.1016/S0048-9697(99)00088-1

    Article  CAS  Google Scholar 

  • Antonopoulos VZ, Gianniou SK (2003) Simulation of water temperature and dissolved oxygen distribution in Lake Vegoritis, Greece. Ecol Model 160:39–53. doi:10.1016/S0304-3800(02)00286-7

    Article  CAS  Google Scholar 

  • Antanasijević DZ, Pocajt VV, Povrenović DS, Perić-Grujić AA, Ristić MĐ (2013) Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study. Environ Sci Pollut Res 20(12):9006–9013. doi:10.1007/s11356-013-1876-6

    Article  Google Scholar 

  • Ay M, Kisi O (2012) Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. ASCE J Environ Eng 138(6):654–662. doi:10.1061/ (ASCE) EE.1943-7870.0000511

    Article  CAS  Google Scholar 

  • Bahadori A, Vuthaluru HB (2010) Simple Arrhenius-type function accurately predicts dissolved oxygen saturation concentrations in aquatic systems. Process Saf Environ Prot 88:335–340. doi:10.1016/j.psep.2010.05.002

    Article  CAS  Google Scholar 

  • Bennett JP, Rathbun RE (1972) Reaeration in open-channel flow, USGS Professional Paper: 737, 75p, U.S. Govt. Print. Off.

  • Brezonik PL, Stadelmann TH (2002) Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA. Water Res 36:1743–1757. doi:10.1016/S0043-1354

    Article  CAS  Google Scholar 

  • Bureau of Reclamation (2000) Klamath Project-Historical operation: Klamath Falls, Oregon, Bureau of Reclamation, 53 p. plus appendices, accessed April 2, 2008. http://www.usbr.gov/mp/kbao/docs/Historic%20Operation.pdf -->

  • Chau KW (2006) A review on integration of artificial intelligence into water quality modelling. Mar Pollut Bull 52:726–733. doi:10.1016/j.marpolbul.2006.04.003

    Article  CAS  Google Scholar 

  • Chandana Prasad PW, Beg A (2009) Investigating data preprocessing methods for circuit complexity models. Expert Syst Appl 36(1):519–526. doi:10.1016/j.eswa.2007.09.052.

    Article  Google Scholar 

  • Cox BA (2003a) A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland Rivers. Sci Total Environ 314–316:335–377. doi:10.1016/S0048-9697(03)00063-9

    Article  Google Scholar 

  • Cox BA (2003b) A review of dissolved oxygen modelling techniques for lowland Rivers. Sci Total Environ 314–316:303–334. doi:10.1016/S0048-9697(03)00062-7

    Article  Google Scholar 

  • Cybenko G (1989) Approximation by superposition of a sigmoidal function. Math Control Signals Syst 2(4):303–314

    Article  Google Scholar 

  • David AC (2006) Water-quality engineering in natural systems. Wiley, Hoboken, 628p

    Google Scholar 

  • Diamantopoulou MJ, Antonopoulos VZ, Papamichail DM (2007) Cascade Correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers. Water Resour Manag 21:649–662. doi:10.1007/s11269-006-9036-0

    Google Scholar 

  • Dovžan D, Škrjanc I (2011) Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes. ISA Trans 50:159–169. doi:10.1016/j.isatra.2011.01.004.

    Article  Google Scholar 

  • Deas ML, Orlob GT (1999) Klamath River Modeling Project. Project #96-HP-01. Assessment of alternatives for flow and water quality control in the Klamath River below Iron Gate Dam. University of California Davis Center for Environmental and Water Resources Engineering. Report No. 99–04. 379pp. http://permanent.access.gpo.gov/lps60062/krisweb/Klamath.

  • Farquad MAH, Ravi V, Raju SB (2010) Support vector regression based hybrid rule extraction methods for forecasting. Expert Syst Appl 37:5577–5589. doi:10.1016/j.eswa.2010.02.055.

    Article  Google Scholar 

  • Fang X, Stefan HG (1995) Interaction between oxygen transfer mechanisms in lake models. J Environ Eng, ASCE 121(6):447–454. doi:10.1061/(ASCE)0733-9372(1995)121:6(447)

    Article  CAS  Google Scholar 

  • Fausett L (1994) Fundamentals of neural networks: architectures, algorithms, and applications. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Funahashi K (1989) On the approximate realization of continuous mapping by neural networks. Neural Netw 2:183–192

    Article  Google Scholar 

  • Gajate A, Haber R, Del Toro R, Vega P, Bustillo A (2010) Tool wear monitoring using neuro-fuzzy techniques: a comparative study in a turning process. J Intell Manuf 23(3):869–882. doi:10.1007/s10845-010-0443-y

    Article  Google Scholar 

  • Gannett MW, Lite KE Jr, La Marche JL, Fisher BJ, Polette DJ (2007) Ground-water hydrology of the upper Klamath Basin, Oregon and California: U.S. Geological Survey Scientific Investigations Report 2007–5050, 84 p. http://pubs.usgs.gov/sir/2007/5050/.

  • Giusti E, Marsili-Libelli S (2009) Spatio-temporal dissolved oxygen dynamics in the Orbetello lagoon by fuzzy pattern recognition. Ecol Model 220:2415–2426. doi:10.1016/j.ecolmodel.2009.06.007

    Article  CAS  Google Scholar 

  • Goldman CR, Horne AJ (1983) Limnology. McGraw-Hill, New York

    Google Scholar 

  • Haider H, Ali W (2010) Development of dissolved oxygen model for a highly variable flow river: a case study of Ravi River in Pakistan. Environ Monit Assess 15:583–599. doi:10.1007/s10666-010-9240-4

    Google Scholar 

  • Ham F, Kostanic I (2001) Principles of neurocomputing for science and engineering. McGraw-Hill, New York

    Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

  • Heddam S, Bermad A, Dechemi N (2011) Applications of radial basis function and generalized regression neural networks for modelling of coagulant dosage in a drinking water treatment: a comparative study. ASCE J Environ Eng 137(12):1209–1214. doi:10.1061/ (ASCE) EE.1943-7870.0000435

    Article  CAS  Google Scholar 

  • Heddam S, Bermad A, Dechemi N (2012) ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study. Environ Monit Assess 184:1953–1971. doi:10.1007/s10661-011-2091-x

    Article  CAS  Google Scholar 

  • Heddam S, Dechemi N (2014) A new approach based on the dynamic evolving neural-fuzzy inference system (DENFIS) for modelling coagulant dosage (Dos): case study of water treatment plant of Algeria. Desalination and Water Treatment. Doi: 10.1080/19443994.2013.878669

  • He J, Chu A, Cathryn Ryan M, Valeo C, Zaitlin B (2011) Abiotic influences on dissolved oxygen in a riverine environment. Ecol Eng 37:1804–1814. doi:10.1016/j.ecoleng.2011.06.022.

    Article  Google Scholar 

  • Hwang YC, Song Q (2009) Dynamic Neural Fuzzy Inference System. Proceedings of the international conference on Advances in neuro-information processing ICONIP. Lecture Notes in Computer Science, Volume 5506/2009, 1245–1250. Springer Berlin. Doi: 10.1007/978-3-642-02490-0-151.

  • Jolai F, Ghanbari A (2010) Integrating data transformation techniques with Hopfield neural networks for solving travelling salesman problem. Expert Syst Appl 37:5331–5335. doi:10.1016/j.eswa.2010.01.002

    Article  Google Scholar 

  • Kannel PR, Lee S, Lee YS, Kanel SR, Khan SP (2007) Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environ Monit Assess 132:93–110. doi:10.1007/s10661-006-9505-1

    Article  CAS  Google Scholar 

  • Kasabov N, Song Q, Tian MM (2008) Fuzzy-neuro systems for local and personalized modelling. Forging new frontiers: fuzzy pioneers II. Stud Fuzziness Soft Comput 218(2008):175–197. doi:10.1007/978-3-540-73185-6-8

    Article  Google Scholar 

  • Kasabov N, Woodford B (1999) Rule Insertion and Rule Extraction from Evolving Fuzzy Neural Networks: Algorithms and Applications for Building Adaptive, Intelligent Expert Systems. In: Proc. of IEEE Intern. Fuzzy Systems Conference: Seoul 1406–1411. Doi:10.1109/FUZZY.1999.790109.

  • Kasabov N, Song Q (2002) DENFIS: dynamic, evolving neural–fuzzy inference systems and its application for time-series prediction. IEEE Trans Fuzzy Syst 10:144–154. doi:10.1109/91.995117

    Article  Google Scholar 

  • Kasabov N (2007) Evolving connectionist systems & the knowledge engineering approach, Second editionth edn. Springer, New York, p 465. ISBN 978-1-84628-345-1

    Google Scholar 

  • Kasabov N (1998) The ECOS framework and the ECO learning method for evolving connectionist systems. J Adv Comput Intell 2(6):195–202

    Google Scholar 

  • Kasabov N (2003) Evolving connectionist systems: methods and applications in bioinformatics, brain study and intelligent machines. Springer, London

    Book  Google Scholar 

  • Kasabov N, Chan Z, Song Q, Greer D (2005) Evolving connectionist systems with evolutionary self-optimisation. Stud Fuzz 173:181–202

    Google Scholar 

  • Lindenberg MK, Hoilman G, Wood TM (2009). Water quality conditions in Upper Klamath and Agency Lakes, Oregon, 2006: U.S. Geological Survey Scientific Investigations Report 2008–5201, 54 p. http://pubs.usgs.gov/of/2008/5201/.

  • Liu S, Xu LK, Li DL, Li Q, Jiang Y, Tai H, Zeng L (2013) Prediction of dissolved oxygen content in river crab culture based on least squares support vector regression optimized by improved particle swarm optimization. Comput Electron Agric 95:82–91. doi:10.1016/j.engappai.2013.09.019

    Article  Google Scholar 

  • Loucks DP, Bee EV, Stedinger JR, Dijkman JPM, Villars MT (2005) Water Resources Systems Planning and Management an Introduction to Methods, Models and Applications, Chapter 12. ISBN 92-3-103998-9. Studies and Reports in Hydrology & UNESCO Publishing. http://hdl.handle.net/1813/2804.

  • Lu S, Yan M, Tai H, Xu L, Li D (2012) Prediction of dissolved oxygen content in aquaculture of hyriopsis cumingii using Elman neural network. D. Li and Y. Chen (Eds.): computer and computing technologies in agriculture V (CCTA) 2011, Part III. IFIP Advances in Information and Communication Technology 370, 508–518. Doi: 10.1007/978-3-642-27275-2-57.

  • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15(1):101–124. doi:10.1016/S1364-8152(99)00007-9

    Article  Google Scholar 

  • Maier HR, Jain A, Dandy GC, Sudheer KP (2010) Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ Model Softw 25(8):891–909. doi:10.1016/j.envsoft.2010.02.003

    Article  Google Scholar 

  • Maniquiz MC, Lee SY, Kim LH (2010) Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables. J Environ Sci 22(6):946–952. doi:10.1016/S1001-0742(09)60203-5

    Article  Google Scholar 

  • Massoud MA (2012) Assessment of water quality along a recreational section of the Damour River in Lebanon using the water quality index. Environ Monit Assess 184:4151–4160. doi:10.1007/s10661-011-2251-z.

    Article  Google Scholar 

  • Mrazik S (2007) Oregon Water Quality Index Summary Water Years 1997–2006. Oregon Dept. of Environmental Quality. DEQ07-LAB-007-TR, 13pp. www.deq.state.or.us

  • Mohanty R, Ravi V, Patra MR (2009) Software Reliability Prediction Using Group Method of Data Handling. In: Sakai H et al (eds) RSFDGrC 2009, LNAI 5908. Springer, Berlin, pp 344–351. doi:10.1007/978-3-642-10646-0

    Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE Am Soc Agric Biol Eng 50(3):885–900, ISSN 0001–2351

    Google Scholar 

  • Murty Y, Bahallamudi S, Srinivasan K (2006) Non-uniform flow effect on optimal waste load allocation in rivers. Water Resour Manag 20(4):509–530. doi:10.1007/s11269-006-3084-3

    Google Scholar 

  • Najah A, El-Shafie A, Karim OA, El-Shafie AH (2014) Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring. Environ Sci Pollut Res 21(3):1658–1670. doi:10.1007/s11356-013-2048-4

    Article  CAS  Google Scholar 

  • Patil A, Deng Z, Malone RF (2012) Temporal scale-induced uncertainty in load duration curves for instream-dissolved oxygen. Environ Monit Assess 185(2):1939–1949. doi:10.1007/s10661-012-2678-x

    Article  Google Scholar 

  • Poulson SR, Sullivan AB (2010) Assessment of diel chemical and isotopic techniques to investigate biogeochemical cycles in the upper Klamath River, Oregon, USA. Chem Geol 269:3–11. doi:10.1016/j.chemgeo.2009.05.016

    Article  CAS  Google Scholar 

  • Risley JC, Gannett MW, Lea JK, Roehl EA Jr (2001) An analysis of statistical methods for seasonal flow forecasting in the Upper Klamath River Basin of Oregon and California: U.S. Geological Survey Scientific Investigations Report 2005–5177, 44 p. http://pubs.usgs.gov/sir/2005/5177/

  • Reid GK, Wood RD (1976) Ecology of inland waters and estuaries. Van Nostrand, New York

    Google Scholar 

  • Rudolf A, Ahumada R, Pérez C (2002) Dissolved oxygen content as an index of water quality in San Vicente Bay, Chile (36°). Environ Monit Assess 78:89–100. doi:10.1023/ A: 1016140819487

    Article  Google Scholar 

  • Rumelhart DE, McClelland JL (1986) Parallel distribution processing: exploration in the microstructure of cognition. MIT Press, Cambridge

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back propagating errors. Nature 323(9):533–536

    Article  Google Scholar 

  • Sanchez E, Colmenarejo MF, Vicente J, Rubio A, Garcia MG, Travieso L, Borjac R (2007) Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecol Indic 7:315–328. doi:10.1016/j.ecolind.2006.02.005

    Article  Google Scholar 

  • Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network modeling of the river water quality—a case study. Ecol Model 220:888–895. doi:10.1016/j.ecolmodel.2009.01.004.

    Article  CAS  Google Scholar 

  • Shahane AN (1976) Interdisciplinary models of water systems. Ecol Model 2:117–145

    Article  Google Scholar 

  • Soyupak S, Karaer F, Gürbüz H, Kivrak E, Sentürket E, Yazici A (2003) A neural network-based approach for calculating dissolved oxygen profiles in reservoirs. Neural Comput Appl 12, 3–4, 166–172. doi: 10.1007/s00521-003-0378-8.

  • Streeter HW, Phelps EP (1925) A study of the pollution and natural purification of the Ohio River, vol 146, U.S. Public Health Service. Publication Health Bulletin, Washington

    Google Scholar 

  • Sugeno M, Kang G (1988) Structure identification of fuzzy model. Fuzzy Sets Syst 26(1):15–33

    Article  Google Scholar 

  • Sullivan AB, Rounds SA, Deas ML, Sogutlugil IE (2012) Dissolved oxygen analysis, TMDL model comparison, and particulate matter shunting-Preliminary results from three model scenarios for the Klamath River upstream of Keno Dam, Oregon: U.S. Geological Survey Open-File Report 2012–1101, 30 p. http://pubs.usgs.gov/of/2012/1101/.

  • Sullivan AB, Rounds SA, Deas ML, Asbill JR, Wellman RE, Stewart MA, Johnston MW, Sogutlugil IE (2011) Modeling hydrodynamics, water temperature, and water quality in the Klamath River upstream of Keno Dam, Oregon, 2006–09: U.S. Geological Survey Scientific Investigations Report 2011–5105, 70 p. http://pubs.usgs.gov/sir/2001/5105/.

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC 15(1):116–132

    Article  Google Scholar 

  • Tan Z, Quek C, Cheng PYK (2011) Stock trading with cycles: a financial application of ANFIS and reinforcement learning. Expert Syst Appl 38:4741–4755. doi:10.1016/j.eswa.2010.09.001

    Article  Google Scholar 

  • Talei A, Chua LHC, Quek C, Jansson PE (2013) Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning. J Hydrol 488:17–32. doi:10.1016/j.jhydrol.2013.02.022

    Article  Google Scholar 

  • USGS Oregon Water Science Center, (2013). http://water.usgs.gov.

  • USGS (2013) http://ga.water.usgs.gov/edu/dissolvedoxygen.html.

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313

    Article  Google Scholar 

  • Watts MJ (2004) Evolving Connectionist Systems Characterisation, Simplification, Formalisation, Explanation and Optimisation. PhD Thesis University of Otago, Dunedin, New Zealand. 396pp.

  • Watts MJA (2009) A decade of Kasabov's evolving connectionist systems: a review. IEEE Trans Syst Man Cybern C Appl Rev 39(3):253–269. doi:10.1109/TSMCC.2008.2012254

    Article  Google Scholar 

  • Wilding TK, Brown E, Collier KJ (2012) Identifying dissolved oxygen variability and stress in tidal freshwater streams of northern New Zealand. Environ Monit Assess 184:6045–6060. doi:10.1007/s10661-011-2402-2

    Article  CAS  Google Scholar 

  • Wen X, Fang J, Diao M, Zhang C (2013) Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China. Environ Monit Assess 185:4361–4371. doi:10.1007/s10661-012-2874-8.

    Article  CAS  Google Scholar 

  • Zoveidavianpoor M, Samsuri A, Shadizadeh SR (2013) Adaptive neuro fuzzy inference system for compressional wave velocity prediction in a carbonate reservoir. J Appl Geophys 89:96–107. doi:10.1016/j.jappgeo.2012.11.010

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of the United States Geological Survey (USGS) for providing the data that makes this research possible. Once again, we would like to thank anonymous reviewers and the editor of ESPR for their invaluable comments and suggestions on the contents of the manuscript which significantly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Heddam.

Additional information

Responsible editor: Michael Matthies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heddam, S. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA. Environ Sci Pollut Res 21, 9212–9227 (2014). https://doi.org/10.1007/s11356-014-2842-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2842-7

Keyword

Navigation