Skip to main content
Log in

Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Increasing use of nanoparticles in daily products is of great concern today, especially when their positive and negative impact on environment is not known. Hence, in current research, we have studied the impact of silver nanoparticle (AgNPs) and silver nitrate (AgNO3) application on seed germination, root, and shoot length of castor bean, Ricinus communis L. plant. Silver nanoparticles had no significant effects on seedling growth even at higher concentration of 4,000 mg L−1, while the silver in bulk form as AgNO3 applied on the castor bean seeds inhibited the seed germination. Silver uptake in seedlings of the castor seeds on treatment with both the forms of silver was confirmed through atomic absorption spectroscopy studies. The silver nanoparticle and silver nitrate application to castor seeds also caused an enhanced enzymatic activity of ROS enzymes and phenolic content in castor seedlings. High-performance liquid chromatography analysis of individual phenols indicated enhanced content of parahydroxy benzoic acid. These kinds of studies are of great interest in order to unveil the movement and accumulation of nanoparticles in plant tissues for assessing future applications in the field or laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectroscopy

AgNPs:

Silver nanoparticles

AgNO3 :

Silver nitrate

CAT:

Catalase

DLS:

Dynamic light scattering

HPLC:

High-performance liquid chromatography

NP:

Nanoparticles

POD:

Peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TEM:

Transmission electron microscope

XRD:

X-ray diffraction

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Asha Rani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  • Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  CAS  Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Tech 42(11):4133–4139

    Article  CAS  Google Scholar 

  • Bernhardt ES, Colman BP, Hochella MF Jr, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1954–1965

    Article  CAS  Google Scholar 

  • Beyer WF Jr, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  CAS  Google Scholar 

  • Blaser SA, Scheringer M, Macleod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2–3):396–409

    Article  CAS  Google Scholar 

  • Bone AJ, Colman BP, Gondikas AP, Newton KM, Harrold KH, Cory RM, Unrine JM, Klaine SJ, Matson CW, Di Giulio RT (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2 − toxicity and Ag speciation. Environ Sci Technol 46:6925–6933

    Article  CAS  Google Scholar 

  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Ann Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon-nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Article  CAS  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  CAS  Google Scholar 

  • Chakraborti T, Mondal M, Roychoudhury S, Chakraborti S (1999) Oxidant, mitochondria and calcium: an overview. Cell Signal 11(2):77–85

    Article  CAS  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Tech 42:4583–4588

    Article  CAS  Google Scholar 

  • de Ascensao ARFDC, Dubery Ian A (2003) Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f.sp. cubense. Phytochemistry 63(6):679–686

    Article  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    CAS  Google Scholar 

  • Domingos RF, Baalousha MA, JuNam Y, Reid MM, Tufenkji N, Lead JR, Leppard GG, Wilkinson KJ (2009) Characterising manufactured nanoparticles in the environment: multimethod determination of particles sized. Environ Sci Technol 43(5):1282–1286

    Article  CAS  Google Scholar 

  • Ederli L, Reale L, Ferrauti F, Pasqualini S (2004) Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol Plant 121:66–74

    Article  CAS  Google Scholar 

  • Ekmekci Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    Article  CAS  Google Scholar 

  • Eva JG, Lesley CB, Jamie RL (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Poll 159(6):1551–1559

    Article  Google Scholar 

  • Fatima RA, Ahmad M (2005) Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Sci Total Environ 346:256–273

    Article  CAS  Google Scholar 

  • Fridovich I (1997) Superoxide anion radical (O2), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

    Article  CAS  Google Scholar 

  • Greulich C, Braun D, Peetsch A, Diendorf J, Siebers B, Epple M, Koller M (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2:6981–6987

    Article  CAS  Google Scholar 

  • Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10:691–695

    Article  CAS  Google Scholar 

  • Horvath E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signalling. J Plant Growth Reg 26:290–300

    Article  CAS  Google Scholar 

  • Irtelli B, Navari-Izzo F (2006) Influence of sodium nitrilotriacetate (NTA) and citric acid on phenolic and organic acids in Brassica juncea grown in excess of cadmium. Chemosphere 65:1348–1354

    Article  CAS  Google Scholar 

  • Jyothsna Y, Kapil M, Usha Rani P (2009) Effects of herbivore feeding on biochemical and nutrient profile of castor bean, Ricinus communis L. plants. Allelopathy J 24(1):131–142

    Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase, and reductase protein and other enzymes involved in the polyphenoloxidase activities during rice leaf light dependent synthesis of 5-aminolaevulinic acid senescence. Plant Physiol 57:315–319

    Article  CAS  Google Scholar 

  • Kato S, Aoshima H, Saitoh Y, Miwa N (2009) Highly hydroxylated or γ-cyclodextrin bicapped water-soluble derivative of fullerene: the antioxidant ability assessed by electron spin resonance method and β-carotene bleaching assay. Bioorg Med Chem Lett 19:5293–5296

    Article  CAS  Google Scholar 

  • Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223(5):2799–2806

    Article  CAS  Google Scholar 

  • Krishnaraj C, Jagan G, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri L. Wettst. plant growth metabolism. Process Biochem 47(4):651–658

    Article  CAS  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Tot Environ 407:5243–5246

    Article  CAS  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27(9):1915–1921

    Article  CAS  Google Scholar 

  • Lee JG, Qiang W, Ying Y, Zhang W, Matt G, Li K, Huang Y, Chen Y, Kolmakov A, Ma X (2012a) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology, ahead of print: pages 1–15 doi:10.3109/17435390.2012.658094

  • Lee WM, Kwak JL, An YN (2012b) Effect of silver nanoparticles in crop plants Phaseolus radiates and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499

    Article  CAS  Google Scholar 

  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175

    Article  CAS  Google Scholar 

  • Liu RY, Kim D, Yang SH, Li GC (1993) Dual control of the heat shock response: involvement of a constitutive heat shock element binding factor. Proc Nat Acad Sci USA 90:3078–3082

    Article  CAS  Google Scholar 

  • Macken A, Byrne HJ, Thomas KV (2012) Effects of salinity on the toxicity of ionic silver and Ag-PVP nanoparticles to Tisbe battagliai and Ceramium tenuicorne Ecotox. Environ Saf 86:101–110

    Article  CAS  Google Scholar 

  • Mazumdar H, Ahmed GU (2011) Synthesis of silver nanoparticles and its adverse effect on seed germinations in Oryza sativa, Vigna radiate and Brassica campestris. Int J Adv Biotechnol Res 2(4):404–413

    CAS  Google Scholar 

  • Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo ZP, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157(11):3034–3041

    Article  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Monica BC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Google Scholar 

  • Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27(9):510–517

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008a) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386

    Article  CAS  Google Scholar 

  • Navarro E, Piccipetra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008b) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Tech 42:8959–8964

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  Google Scholar 

  • Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754

    Article  CAS  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453C: 321–332

  • Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18(1):89–108

    Article  CAS  Google Scholar 

  • Ravindran A, Prathna TC, Vinod Kumar V, Chandrasekaran N, Mukherjee A (2012) Bovine serum albumin mediated decrease in silver nanoparticle phytotoxicity: root elongation and seed germination assay. Toxicol Environ Chem 94(1):91–98

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Gardea MD, Peralta-Videa JR, Jorge, Gardea-Torresdey L (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    Article  CAS  Google Scholar 

  • Ruffini Castiglione M, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Google Scholar 

  • Salama MHH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotech 3(10):190–197

    Google Scholar 

  • Sgherri C, Cosi E, Navari-Izzo F (2003) Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiol Plant 118(1):21–28

    Article  CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Pardha Saradhi P, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotech 167(8):2225–2233

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticul 16:144–153

    Google Scholar 

  • Sresty TVS, Rao KVM (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ Exp Bot 41:3–13

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  Google Scholar 

  • Unrine JM, Colman BP, Bone AJ, Gondikas AP, Matson CW (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 1 aggregation and dissolution. Environ Sci Technol 46(13):6915–6924

    Article  CAS  Google Scholar 

  • Usha Rani P (2008) Allelochemical stress induced biochemical changes in the leaves and plant growth regulation in Ricinus communis L. Allelopathy J 22(1):79–92

    Google Scholar 

  • Usha Rani P, Jyothsna Y (2010) Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiol Plant 32:695–701

    Article  Google Scholar 

  • Usha Rani P, Rajasekharreddy P (2011) Green synthesis of silver-protein (core-shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloids Surf A Physiochem Eng Asp 389(1–3):188–194

    Article  CAS  Google Scholar 

  • Vitoria AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–710

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Pl Biol 5:218–222

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807

    Article  CAS  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  Google Scholar 

  • Yin L, Cheng Y, Espinasse B, Colman PB, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    Article  CAS  Google Scholar 

  • Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7(10):e47674

    Article  CAS  Google Scholar 

  • Zhang HY, Jiang YN, He ZY, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Pl Physiol 162:977–984

    Article  CAS  Google Scholar 

  • Zhang S, Zhang H, Qin R, Jiang W, Liu D (2009) Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicol 18(7):814–823

    Article  CAS  Google Scholar 

  • Zhao CM, Wang WX (2012) Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicol 6(4):361–370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. J. S. Yadav, Director, CSIR Indian Institute of Chemical Technology Hyderabad, India, for providing the facilities to carry out the present research. One of the authors JY thanks CSIR, New Delhi, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pathipati Usha Rani.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasur, J., Rani, P.U. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20, 8636–8648 (2013). https://doi.org/10.1007/s11356-013-1798-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1798-3

Keywords

Navigation