Skip to main content

Advertisement

Log in

Cr(VI) sorption by free and immobilised chromate-reducing bacterial cells in PVA–alginate matrix: equilibrium isotherms and kinetic studies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Chromate-resistant bacterial strain isolated from the soil of tannery was studied for Cr(VI) bioaccumulation in free and immobilised cells to evaluate its applicability in chromium removal from aqueous solution. Based on the comparative analysis of the 16S rRNA gene, and phenotypic and biochemical characterization, this strain was identified as Paenibacillus xylanilyticus MR12. Mechanism of Cr adsorption was also ascertained by chemical modifications of the bacterial biomass followed by Fourier transform infrared spectroscopy analysis of the cell wall constituents. The equilibrium biosorption analysed using isotherms (Langmuir, Freundlich and Dubinin–Redushkevich) and kinetics models (pseudo-first-order, second-order and Weber–Morris) revealed that the Langmuir model best correlated to experimental data, and Weber–Morris equation well described Cr(VI) biosorption kinetics. Polyvinyl alcohol alginate immobilised cells had the highest Cr(VI) removal efficiency than that of free cells and could also be reused four times for Cr(VI) removal. Complete reduction of chromate in simulated effluent containing Cu2+, Mg2+, Mn2+ and Zn2+ by immobilised cells, demonstrated potential applications of a novel immobilised bacterial strain MR12, as a vital bioresource in Cr(VI) bioremediation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akhtar K, Akhtar MW, Khalid AM (2007) Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum. Water Res 41:1366–1378

    Article  CAS  Google Scholar 

  • APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Baral A, Engelken RD (2002) Chromium-based regulations and greening in metal finishing industries in the USA. Environ Sci Pol 5:121–133

    Article  CAS  Google Scholar 

  • Blazina M, Najdek M, Fuks D, Degobbis D (2005) Fatty acid profiling of microbial community during aging of mucilaginous aggregates in the northern Adriatic. Sci Total Environ 336:91–103

    Article  CAS  Google Scholar 

  • Chang YC, Choi D, Kikuchi S (2012) Enhanced extraction of heavy metals in the two-step process with the mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus. Bioresour Technol 103:477–480

    Article  CAS  Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2011) Bioremediation of Cr(VI) from chromium-contaminated wastewater by free and immobilized cells of Cellulosimicrobium cellulans KUCr3. Bioremediat J 15:173–180

    Article  CAS  Google Scholar 

  • Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163

    Article  CAS  Google Scholar 

  • De-Bashan LE, Bashan Y (2008) Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant–bacterium interactions. Appl Environ Microbiol 74:6797–6802

    Article  CAS  Google Scholar 

  • Dubinin MM, Radushkevich LV (1947) The equation of the characteristic curve of the activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337

    Google Scholar 

  • Freundlich HMF (1906) Über die adsorption in lösungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  • Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420

    Article  CAS  Google Scholar 

  • Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Horsfall M Jr, Ogban F, Akporhonor EE (2006) Sorption of chromium (VI) from aqueous solution by cassava (Manihot sculenta CRANZ) waste biomass. Chem Biodivers 3:161–173

    Article  CAS  Google Scholar 

  • Ignatov OV, Gulii OI, Singirtsev IN, Scherbakov AA, Makarov OE, Ignatov VV (2002) Effects of p-nitrophenol and organophosphorous nitroaromatic insecticides on the respiratory activity of free and immobilized cells of strains S-11 and BA-11 of Pseudomonas putida. Prikl Biokhim Mikrobiol 38:278–285

    CAS  Google Scholar 

  • Khan MA, Ngabura M, Choong TSY, Masood H, Chuah LA (2012) Biosorption and desorption of nickel on oil cake: batch and column studies. Bioresour technol 103:35–42

    Article  CAS  Google Scholar 

  • Konovalova VV, Dmytrenko GM, Nigmatullin RR, Bryk MT, Gvozdyak PI (2003) Chromium (VI) reduction in a membrane bioreactor with immobilized Pseudomonas cells. Enzyme Microb Technol 33:899–907

    Article  CAS  Google Scholar 

  • Krishnani KK, Mengb X, Christodoulatos C, Bodduc VM (2008) Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater 153:1222–1234

    Article  CAS  Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. K Sven Vetenskapsakad Handl 24:1–39

    Google Scholar 

  • Langmuir I (1916) The adsorption of gases on plane surface of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  Google Scholar 

  • Laxman RS, More SV (2002) Reduction of hexavalent chromium by Streptomyces griseus. Miner Eng 15:831–837

    Article  CAS  Google Scholar 

  • Mclean J, Beveridge TJ (2000) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromate copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  Google Scholar 

  • Nancharaiah YV, Dodge C, Venugopalan VP, Narasimhan SV, Francis AJ (2010) Immobilization of Cr(VI) and its reduction to Cr(III) phosphate by granular biofilms comprising a mixture of microbes. Appl Environ Microbiol 76:2433–2438

    Article  CAS  Google Scholar 

  • Nilsson K, Birnbaum S, Flygare S, Linse L, Schröder U, Jeppsson U, Larsson PO, Mosbach K, Brodelius P (1983) A general method for the immobilization of cells with preserved viability. Eur J Appl Microbiol Biotechnol 17:319–326

    Google Scholar 

  • Pang Y, Zeng GM, Tang L, Zhang Y, Liu YY, Lei XX, Wu MS, Li Z, Liu C (2011) Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresour Technol 102:10733–10736

    Article  CAS  Google Scholar 

  • Poopal AC, Laxman RS (2008) Hexavalent chromate reduction by immobilized Streptomyces griseus. Biotechnol Lett 30:1005–1010

    Article  CAS  Google Scholar 

  • Pundle A, Prabhune A, Sivaraman H (1988) Immobilization of Saccharomyces uvarum cells in porous beads of polyacrylamide gel for ethanolic fermentation. Appl Microbiol Biotechnol 29:426–429

    Article  CAS  Google Scholar 

  • Puzon GJ, Roberts AG, Kramer DM, Xun L (2005) Formation of soluble organo-chromium (III) complexes after chromate reduction in the presence of cellular organics. Environ Sci Technol 39:2811–2817

    Article  CAS  Google Scholar 

  • Quintelas C, Fernandes B, Castro J, Figueiredo H, Tavares T (2005) Biosorption of Cr(VI) by Bacillus coagulans biofilm supported on granular activated carbon (GAC). Chem Eng J 136:195–203

    Article  Google Scholar 

  • Quintelas C, Fernandes B, Silva B, Figueiredo H, Tavares T (2009) Treatment of chromium(VI) solutions in a pilot-scale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC. Bioresour Technol 100:220–226

    Article  CAS  Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353

    Article  CAS  Google Scholar 

  • Sarangi A, Krishnan C (2007) Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour Technol 99:4130–4137

    Article  Google Scholar 

  • Shankar V, Kotwal SM, Rao BS (1985) Yeast cells entrapped in low-gelling temperature agarose for the continuous production of ethanol. Biotechnol Lett 7:615–618

    Article  CAS  Google Scholar 

  • Upreti RK, Shrivastava R, Chaturvedi UC (2004) Gut microflora and toxic metals: chromium as a model. Indian J Med Res 119:49–59

    CAS  Google Scholar 

  • Viera M, Curutchet G, Donati E (2003) A combined bacterial process for the reduction and immobilization of chromium. Int Biodeterior Biodegrad 52:31–34

    Article  CAS  Google Scholar 

  • Wasi S, Tabrez S, Ahmad M (2011) Suitability of immobilized Pseudomonas fluorescens SM1Strain for remediation of phenols, heavy metals and pesticides from water. Water Air Soil Pollut 220:89–99

    Article  CAS  Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Proceed Am Soc Civil Eng 89:31–59

    Google Scholar 

  • White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. Int Biodeterior Biodegradation 35:17–40

    Article  CAS  Google Scholar 

  • Xu X, Philip S, Stewart SP, Chen X (1996) Transport limitation of chlorine disinfection of Pseudomonas aeruginosa entrapped in alginate beads. Biotechnol Bioeng 49:93–100

    Article  CAS  Google Scholar 

  • Yang J, He M, Wang G (2009) Removal of toxic chromate using free and immobilized Cr(VI)-reducing bacterial cells of Intrasporangium sp. Q5-1. World J Microbiol Biotechnol 25:1579–1587

    Article  CAS  Google Scholar 

  • Zheng H, Liua D, Zheng Y, Liang S, Liu Z (2009) Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J Hazard Mater 167:141–147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Laboratory facilities of G. B. Pant University of Agriculture and Technology, Pantnagar, and Senior Research Fellowship to Miss Monica from the University Grants Commission, New Delhi, are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. N. Rai.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawat, M., Rawat, A.P., Giri, K. et al. Cr(VI) sorption by free and immobilised chromate-reducing bacterial cells in PVA–alginate matrix: equilibrium isotherms and kinetic studies. Environ Sci Pollut Res 20, 5198–5211 (2013). https://doi.org/10.1007/s11356-013-1493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1493-4

Keywords

Navigation