Skip to main content

Advertisement

Log in

Comparative study of different exposure routes on the biotransformation and genotoxicity of PAHs in the flatfish species, Scophthalmus maximus

  • Ecotoxicology of estuaries in France and Québec, Canada
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, laboratory experiments were carried out in order to come to a better understanding of the fate of polycyclic aromatic hydrocarbons (PAHs) in the marine environment and especially on their bioaccumulation, biotransformation and genotoxic effects in fish. Juveniles of turbot (Scophthalmus maximus) were exposed to PAHs through different routes via (1) a mixture of dissolved PAHs, (2) a PAH-polluted sediment and (3) an oil fuel elutriate. Fish were exposed 4 days followed by a 6-day depuration period. In each experiment, PAH concentrations in the seawater of the tanks were analysed regularly by gas chromatography coupled with mass spectrometry. Muscle and liver samples were also analysed for parent PAH levels and PAH bioconcentration factors were calculated. Biotransformation was evaluated by measuring the levels of PAH metabolites in fish bile. Genotoxicity was assessed by the alkaline comet assay. Regardless of exposure route, the parent PAH concentrations in the liver and muscle showed a peak level 1 day after the beginning of the exposure, followed by a decrease up to the background level towards the end of the experiment, except for the exposure to dissolved PAHs for which levels were relatively low throughout the study. As a consequence, no bioaccumulation was observed in fish tissues at the end of the experiment. In contrast, regardless of exposure routes, a rapid production of biliary metabolites was observed throughout the whole exposure experiment. This was especially true for 1-hydroxypyrene, the major metabolite of pyrene. After 6 days of recovery in clean water, a significant decrease in the total metabolite concentrations occurred in bile. Fish exposed through either route displayed a significant increase in DNA strand breaks after 4 days of exposure, and significant correlations were observed between the level of biliary PAH metabolites and the level of DNA lesions in fish erythrocytes. Overall results indicate that exposure to either a mixture of dissolved PAHs, a PAH-contaminated sediment or a dispersed oil fuel elutriate leads to biotransformation and increase in DNA damage in fish. The quantification of PAH metabolites in bile and DNA damage in erythrocytes appear to be suitable for environmental monitoring of marine pollution either in the case of accidental oil spills or sediment contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aas E, Baussant T, Balk L, Liewenborg B, Andersen OK (2000) PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: a laboratory experiment with Atlantic cod. Aquat Toxicol 51:241–258

    Article  CAS  Google Scholar 

  • Afshar CE, Carrell CJ, Carrell HL, Harvey RG, Kiselyov AS, Amin S, Glusker JP (1996) Bay-region distortions in a methanol adduct of a bay-region diol epoxide of the carcinogen 5-methylchrysene. Carcinogenesis 17:2507–2511

    Article  CAS  Google Scholar 

  • Akcha F, Vincent Hubert F, Pfhol-Leszkowicz A (2003) Potential value of the comet assay and DNA adduct measurement in dab (Limanda limanda) for assessment of in situ exposure to genotoxic compounds. Mutat Res Genet Toxicol Environ 534:21–32

    Article  CAS  Google Scholar 

  • Akcha F, Leday G, Pfohl-Leszkowicz A (2004) Measurement of DNA adducts and strand breaks in dab (Limanda limanda) collected in the field: effects of biotic (age, sex) and abiotic (sampling site and period) factors on the extent of DNA damage. Mutat Res Fundam Mol Mech 552:197–207

    Article  CAS  Google Scholar 

  • Al-Subiai N, Moody AJ, Mustafa SA, Jha AN (2011) A multiple biomarker approach to investigate the effects of copper on the marine bivalve mollusc, Mytilus edulis. Ecotoxicol Environ Saf 74:1913–1920

    Article  CAS  Google Scholar 

  • Barron MG (1990) Bioconcentration: will water-borne organic chemicals accumulate in aquatic animals? Environ Sci Technol 24:1612–1618

    Article  CAS  Google Scholar 

  • Baršiene J, Lehtonen KK, Koehler A, Broeg K, Vuorinen PJ, Lang T, Pempkowiak J, Syvokiene J, Dedonyte V, Rybakovas A, Repečka R, Vuontisjärvi H, Kopecka J (2006) Biomarker responses in flounder (Platichthys flesus) and mussel (Mytilus edulis) in the Klaipeda-Būtinge area (Baltic Sea). Mar Pollut Bull 53:422–436

    Article  Google Scholar 

  • Basu N, Billiard S, Fragoso N, Omoike A, Tabash S, Brown S, Hodson P (2001) Ethoxyresorufin-O-deethylase induction in trout exposed to mixtures of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 20:1244–1251

    CAS  Google Scholar 

  • Baumard P, Budzinski H (1997) Internal standard quantification method and gas chromatograph-mass spectrometer (GC-MS): a reliable tool for polycyclic aromatic hydrocarbon (PAH) quantification in natural matrices. Analusis 25:246–252

    CAS  Google Scholar 

  • Baussant T, Sanni S, Jonsson G, Skadsheim A, Børseth JF (2001) Bioaccumulation of polycyclic aromatic compounds: 1. Bioconcentration in two marine species and in semipermeable membrane devices during chronic exposure to dispersed crude oil. Environ Toxicol Chem 20:1175–1184

    Article  CAS  Google Scholar 

  • Bilbao E, Raingeard D, Diaz de Cerio O, Ortiz-Zarragoitia M, Ruiz P, Izagirre U, Orbea A, Marigomez I, Cajaraville M, Cancio I (2010) Effects of exposure to Prestige-like heavy fuel oil and to perfluorooctane sulfonate on conventional biomarkers and target gene transcription in the thicklip grey mullet Chelon labrosus. Aquat Toxicol 98:282–296

    Article  CAS  Google Scholar 

  • Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. Chem Res Toxicol 13:135–160

    Article  CAS  Google Scholar 

  • Brinkmann M, Hudjetz S, Cofalla C, Roger S, Kammann U, Giesy JP, Hecker M, Wiseman S, Zhang X, Wölz J, Schüttrumpf H, Hollert H (2010) A combined hydraulic and toxicological approach to assess re-suspended sediments during simulated flood events. Part I—multiple biomarkers in rainbow trout. J Soils Sediments 10:1347–1361

    Article  CAS  Google Scholar 

  • Budzinski H, Jones I, Bellocq J, Piérard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58:85–97

    Article  CAS  Google Scholar 

  • Budzinski H, Letellier M, Garrigues P, Le Ménach K (1999) Optimisation of the microwave-assisted extraction in open cell of polycyclic aromatic hydrocarbons from soils and sediments. Study of moisture effect. J Chromatogr A 837:187–200

    Article  CAS  Google Scholar 

  • Budzinski H, Mazeas O, Tronczynski J, Desaunay Y, Bocquene G, Claireaux G (2004) Link between exposure of fish (Solea solea) to PAHs and metabolites: application to the ‘Erika’ oil spill. Aquat Living Resour 17:329–334

    Article  CAS  Google Scholar 

  • Cachot J, Geffard O, Augagneur S, Lacroix S, Le Menach K, Peluhet L, Couteau J, Denier X, Dévier MH, Pottier D, Budzinski H (2006) Evidence of genotoxicity related to high PAH content of sediments in the upper part of the Seine estuary (Normandy, France). Aquat Toxicol 79:257–267

    Article  CAS  Google Scholar 

  • Camus L, Aas E, Borseth JF (1998) Ethoxyresorufin-O-deethylase activity and fixed wavelength fluorescence detection of PAHs metabolites in bile in turbot (Scophthalmus maximus L.) exposed to a dispersed topped crude oil in a continuous flow system. Mar Environ Res 46:29–32

    Article  CAS  Google Scholar 

  • Collier TK, Varanasi U (1991) Hepatic activities of xenobiotic metabolizing enzymes and biliary levels of xenobiotics in English sole (Parophrys vetulus) exposed to environmental contaminants. Arch Environ Contam Toxicol 20:462–473

    Article  CAS  Google Scholar 

  • Della Torre C, Tornambè A, Cappello S, Mariottini M, Perra G, Giuliani S, Amato E, Falugi C, Crisari A, Yakimov MM, Magaletti E (2012) Modulation of CYP1A and enotoxic effects in European seabass (Dicentrarchus labrax) exposed to weathered oil: a mesocosm study. Mar Environ Res 76:48–55

    Article  CAS  Google Scholar 

  • Dévier MH, Le Dû-Lacoste M, Akcha F, Morin B, Peluhet L, Le Menach K, Burgeot T, Budzinski H (2012) Biliary PAH metabolites, EROD activity and DNA damage in dab (Limanda limanda) from Seine estuary (France). Environ Sci Pollut Res. doi:10.1007/s11356-012-1345-7

  • Dianov GL, Parsons JL (2007) Co-ordination of DNA single strand break repair. DNA Repair 6:454–460

    Article  CAS  Google Scholar 

  • Flowers-Geary L, Harvey RG, Penning TM (1992) Examination of diols and diol epoxides of polycyclic aromatic hydrocarbons as substrates for rat liver dihydrodiol dehydrogenase. Biochem J 11:49–58

    CAS  Google Scholar 

  • Frenzilli G, Nigro M, Lyons BP (2009) The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res Rev Mutat 681:80–92

    Article  CAS  Google Scholar 

  • Frosina G, Fortini P, Rossi O, Carrozino F, Raspagliuo G, Cox LS, Lane DP, Abbondandolo A, Dogliotti E (1996) Two pathways for base excision repair in mammalian cells. J Biol Chem 271:9573–9578

    Article  CAS  Google Scholar 

  • Gelboin HV (1980) Benzo[a]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes. Physiol Rev 60:1107–1166

    CAS  Google Scholar 

  • GESAMP (IMO/FAO/UNESCO/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution) (1993) Impact of oil and related chemicals and wastes on the marine environment. Reports and Studies No 50. London, p 180

  • Goanvec C, Theron M, Lacoue-Labarthe T, Poirier E, Guyomarch J, Le-Floch S, Laroche J, Nonnotte L, Nonnotte G (2008) Flow cytometry for the evaluation of chromosomal damage in turbot Psetta maxima (L.) exposed to the dissolved fraction of heavy fuel oil in sea water: a comparison with classical biomarkers. J Fish Biol 73:395–413

    Article  CAS  Google Scholar 

  • Gómez-Gutiérrez A, Garnacho E, Bayona JM, Albaigés J (2007) Assessment of the Mediterranean sediments contamination by persistent organic pollutants. Environ Pollut 148:396–408

    Article  Google Scholar 

  • González JJ, Viñas L, Franco MA, Fumega J, Soriano JA, Grueiro G, Muniategui S, López-Mahía P, Prada D, Bayona JM, Alzaga R, Albaigés J (2006) Spatial and temporal distribution of dissolved/dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige oil spill. Mar Pollut Bull 53:250–259

    Article  Google Scholar 

  • Hartl MGJ, Kilemade M, Sheehan D, Mothersill C, O’Halloran J, O’Brien NM, van Pelt FNAM (2007) Hepatic biomarkers of sediment-associated pollution in juvenile turbot, Scophthalmus maximus L. Mar Environ Res 64:191–208

    Article  CAS  Google Scholar 

  • Inzunza B, Orrego R, Penalosa M, Gavilan JF, Barra R (2006) Analysis of CYP4501A1, PAHs metabolites in bile, and genotoxic damage in Oncorhynchus mykiss exposed to Biobío River sediments, Central Chile. Ecotoxicol Environ Saf 65:242–251

    Article  CAS  Google Scholar 

  • Jonsson G, Bechmann R, Bamber SD, Baussant T (2004) Bioconcentration, biotransformation, and elimination of polycyclic aromatic hydrocarbons in sheepshead minnows (Cyprinodon variegatus) exposed to contaminated seawater. Environ Toxicol Chem 23:1538–1548

    Article  CAS  Google Scholar 

  • Kamman U (2007) PAH metabolites in bile fluids of dab (Limanda limanda) and flounder (Platichthys flesus): spatial distribution and seasonal changes. Environ Sci Pollut Res 14:102–108

    Article  Google Scholar 

  • Kavouras M, Malandrakis EE, Dailianis S, Dadali O, Chatzipli K, Golomazou E, Panagiotaki P, Kaloyianni M, Exadactylos A (2010) DNA damage and repair efficiency comet assay in intensively reared sea bream (Sparus aurata), exposed to heavy metals. Rapp Comm Int Mer Médit 39:558

    Google Scholar 

  • Kerambrun E, Henry F, Perrichon P, Courcot L, Meziane T, Spilmont N, Amara R (2012) Growth and condition indices of juvenile turbot, Scophthalmus maximus, exposed to contaminated sediments: effects of metallic and organic compounds. Aquat Toxicol 108:130–140

    Article  CAS  Google Scholar 

  • Kilemade MF, Hartl MGJ, Sheehan D, Mothersill C, Van Pelt FNAM, O’Halloran J, O’Brien NM (2004) Genotoxicity of field-collected inter-tidal sediments from Cork Harbor, Ireland, to juvenile turbot (Scophthalmus maximus L.) as measured by the comet assay. Environ Mol Mutagen 44:56–64

    Article  CAS  Google Scholar 

  • Kilemade M, Hartl MGJ, O’Halloran J, O’Brien NM, Sheelan D (2009) Effects of contaminated sediment from Cork Harbour, Ireland on the cytochrome P450 system of turbot. Ecotoxicol Environ Saf 72:747–755

    Article  CAS  Google Scholar 

  • Kirby MF, Smith AJ, Rooke J, Neall P, Scott AP, Katsiadaki I (2007) Ethoxyresorufin-O-deethylase (EROD) and vitellogenin (VTG) in flounder (Platichthys flesus): system interaction, crosstalk and implications for monitoring. Aquat Toxicol 81:233–244

    Article  CAS  Google Scholar 

  • Krahn MM, Myers MS, Burrows DG, Malins DC (1984) Determination of metabolites of xenobiotics in the bile of fish from polluted waterways. Xenobiotica 14:633–646

    Article  CAS  Google Scholar 

  • Krahn MM, Rhodes LD, Myers MS, Moore LK, MacLeod WD, Malins DC (1986) Associations between metabolites of aromatic compounds in bile and the occurrence of hepatic lesions in English sole (Parophrys vetulus) from Puget Sound, Washington. Arch Environ Contam Toxicol 15:61–67

    Article  CAS  Google Scholar 

  • Kreitsberg R, Zemit I, Freiberg R, Tambets M, Tuvikene A (2010) Responses of metabolic pathways to polycyclic aromatic compounds in flounder following oil spill in the Baltic Sea near the Estonian coast. Aquat Toxicol 99:473–478

    Article  CAS  Google Scholar 

  • Latimer JS, Zheng J (2003) The sources, transport, and fate of PAHs in the marine environment. In: Douben PET (ed) PAHs: an ecotoxicological perspective. Ecological and Environmental Toxicology Series. Wiley, UK, pp 9–34

    Google Scholar 

  • Laval J, Jurado J, Saparbaev M, Sidorkina O (1998) Antimutagenic role of base-excision repair enzymes upon free radical- induced DNA damage. Mutat Res 402:93–102

    Article  CAS  Google Scholar 

  • Marie-Desvergne C, Maître A, Bouchard M, Ravanat JL, Viau C (2010) Evaluation of DNA adducts, DNA and RNA oxidative lesions, and 3-hydroxybenzo(a)pyrene as biomarkers of DNA damage in lung following intravenous injection of the parent compound in rats. Chem Res Toxicol 23:1207–1214

    Article  CAS  Google Scholar 

  • Mazeas L, Budzinski H (2002) Improved accuracy of GC-MS quantification of aliphatic and aromatic hydrocarbons in marine sediments and petroleums. Validation on reference matrices and application to the Erika oil spill. Int J Environ Anal Chem 82:157–173

    Article  CAS  Google Scholar 

  • Mazéas O, Budzinski H (2005) Solid-phase extraction and purification for the quantification of polycyclic aromatic hydrocarbon metabolites in fish bile. Anal Bioanal Chem 383:985–990

    Article  Google Scholar 

  • Meador JP (2003) Bioaccumulation of PAHs in marine invertebrates. In: Douben PET (ed) PAHs: an ecotoxicological perspective. Ecological and Environmental Toxicology Series. Wiley, UK, pp 147–172

    Chapter  Google Scholar 

  • Meador JP, Stein JE, Reichert WL, Varanasi U (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. In: Ware GW (ed) Reviews of Environmental Contamination and Toxicology, vol 143. Springer, New York, pp 79–166

    Chapter  Google Scholar 

  • Memisoglu A, Samson L (2000) Base excision repair in yeast and mammals. Mutat Res Fundam Mol Mech 451:39–51

    Article  CAS  Google Scholar 

  • Nahrgang J, Camus L, Carls MG, Gonzalez P, Jönsson M, Taban IC, Bechmann RK, Christiansen JS, Hop H (2010) Biomarker responses in polar cod (Boreogadus saida) exposed to the water soluble fraction of crude oil. Aquat Toxicol 97:234–242

    Article  CAS  Google Scholar 

  • Pangrekar J, Kandaswami C, Kole P, Kumar S, Sikka HC (1995) Comparative metabolism of benzo(a)pyrene, chrysene and phenanthrene by brown bullhead liver microsomes. Mar Environ Res 39:51–55

    Article  CAS  Google Scholar 

  • Peters LD, Morse HR, Waters R, Livingstone DR (1997) Responses of hepatic cytochrome P450 1A and formation of DNA-adducts in juveniles of turbot (Scophthalmus maximus L.) exposed to water-borne benzo[a]pyrene. Aquat Toxicol 38:67–82

    Article  CAS  Google Scholar 

  • Reynolds WJ, Feist SW, Jones GJ, Lyons BP, Sheahan DA, Stentiford GD (2003) Comparison of biomarker and pathological responses in flounder (Platichthys flesus L.) induced by ingested polycyclic aromatic hydrocarbon (PAH) contamination. Chemosphere 52:1135–1145

    Article  CAS  Google Scholar 

  • Ruddock PJ, Bird DJ, McEvoy J, Peters LD (2003) Bile metabolites of polycyclic aromatic hydrocarbons (PAHs) in European eels Anguilla anguilla from United Kingdom estuaries. Sci Total Environ 301:105–117

  • Ruiz P, Ortiz-Zarragoita M, Orbea A, Theron M, Le Floch S, Cajaraville M (2012) Responses of conventional and molecular biomarkers in turbot Scophthalmus maximus exposed to heavy fuel oil no. 6 and styrene. Aquat Toxicol 116–117:116–128

    Article  Google Scholar 

  • Santos MM, Solé M, Lima D, Hambach B, Ferreira AM, Reis-Henriques MA (2010) Validating a multi-biomarker approach with the shanny Lipophrys pholis to monitor oil spills in European marine ecosystems. Chemosphere 81:685–691

    Article  CAS  Google Scholar 

  • Short JW, Harris PM (1996) Chemical sampling and analysis of petroleum hydrocarbons in near-surface seawater of Prince William Sound after the Exxon Valdez oil spill. Am Fish Soc Symp 18:17–28

    CAS  Google Scholar 

  • Siddens LK, Larkin A, Krueger SK, Bradfield CA, Waters KM, Tilton SC, Pereira CB, Löhr CV, Arlt VM, Phillips DH, Williams DE, Baird WM (2012) Polycyclic aromatic hydrocarbons as skin carcinogens: comparison of benzo[a]pyrene, dibenzo[def, p]chrysene and three environmental mixtures in the FVB/N mouse. Toxicol Appl Pharmacol 264:377–386

    Article  CAS  Google Scholar 

  • Speit G, Hartmann A (1995) The contribution of excision repair to the DNA effects seen in the alkaline single cell gel test (comet assay). Mutagenesis 10:555–559

    Article  CAS  Google Scholar 

  • Stagg RM, McIntosh A (1996) Hydrocarbon concentrations in the northern North Sea and effects on fish larvae. Sci Total Environ 186:189–201

    Article  Google Scholar 

  • Tairova ZM, Strand J, Chevalier J, Andersen O (2012) PAH biomarkers in common eelpout (Zoarces viviparus) from Danish waters. Mar Environ Res 75:45–53

    Article  CAS  Google Scholar 

  • Trisciani A, Corsi I, Torre CD, Perra G, Focardi S (2011) Hepatic biotransformation genes and enzymes and PAH metabolites in bile of common sole (Solea solea, Linnaeus, 1758) from an oil-contaminated site in the Mediterranean Sea: a field study. Mar Pollut Bull 62:806–814

    Article  CAS  Google Scholar 

  • Tronczýnski J, Munschy C, Héas-Moisan K, Guiot N, Truquet I, Olivier N, Men S, Furaut A (2004) Contamination of the Bay of Biscay by polycyclic aromatic hydrocarbons (PAHs) following the T/V Erika oil spill. Aquat Living Resour 17:243–259

    Article  Google Scholar 

  • Valavanidis A, Vlachogianni T, Triantafillaki S, Dassenakis M, Androutsos F, Scoullos M (2008) Polycyclic aromatic hydrocarbons in surface seawater and in indigenous mussels (Mytilus galloprovincialis) from coastal areas of the Saronikos Gulf (Greece). Estuar Coast Shelf Sci 79:733–739

    Article  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Van Steeg H (2001) The role of nucleotide excision repair and loss of p53 in mutagenesis and carcinogenesis. Toxicol Lett 120:209–219

    Article  Google Scholar 

  • Varanasi U, Gmur DJ (1981) Hydrocarbons and metabolites in English sole (Parophrys vetulus) exposed simultaneously to [3H]-benzol[a]pyrene and [14C]-naphthalene in oil-contaminated sediment. Aquat Toxicol 1:49–67

    Article  CAS  Google Scholar 

  • Varanasi U, Stein JE (1991) Disposition of xenobiotic chemicals and metabolites in marine organisms. Environ Health Perspect 90:93–100

    Article  CAS  Google Scholar 

  • Varanasi U, Nishimoto M, Reichert WL, Eberhart BTL (1986) Comparative metabolism of benzo(a)pyrene and covalent binding to hepatic DNA in English sole, starry flounder, and rat. Cancer Res 46:3817–3824

    CAS  Google Scholar 

  • Varanasi U, Reichert WL, Eberhart BTL, Stein JE (1989) Formation and persistence of benzo[a]pyrene-diolepoxide-DNA adducts in liver of English sole (Parophrys vetulus). Chem Biol Interact 69:203–216

    Article  CAS  Google Scholar 

  • Vuorinen PJ, Keinänen M, Vuontisjärvi H, Baršiene J, Broeg K, Förlin L, Gercken J, Kopecka J, Köhler A, Parkkonen J, Pempkowiak J, Schiedek D (2006) Use of biliary PAH metabolites as a biomarker of pollution in fish from the Baltic Sea. Mar Pollut Bull 53:479–487

    Article  CAS  Google Scholar 

  • Walker SE, Dickhut RM, Chisholm-Brause C, Sylva S, Reddy CM (2005) Molecular and isotopic identification of PAH sources in a highly industrialized urban estuary. Org Geochem 36:619–632

    Article  CAS  Google Scholar 

  • Wenzel-Hartung R, Brune H, Grimmer G, Germann P, Timm J, Wosniok W (1990) Evaluation of the carcinogenic potency of 4 environmental polycyclic aromatic compounds following intrapulmonary application in rats. Exp Pathol 40:221–227

    Article  CAS  Google Scholar 

  • Wessel N, Santos R, Menard D, Le Menach K, Buchet V, Lebayon N, Loizeau V, Burgeot T, Budzinski H, Akcha F (2010) Relationship between PAH biotransformation as measured by biliary metabolites and EROD activity, and genotoxicity in juveniles of sole (Solea solea). Mar Environ Res 69:S71–S73

    Article  CAS  Google Scholar 

  • Whyte JJ, Jung RE, Schmitt CJ, Tillitt DE (2000) Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit Rev Toxicol 30:347–570

    Article  CAS  Google Scholar 

  • Woo S, Kim S, Yum S, Yim UH, Lee TK (2006) Comet assay for the detection of genotoxicity in blood cells of flounder (Paralichthys olivaceus) exposed to sediments and polycyclic aromatic hydrocarbons. Mar Poll Bull 52:1768–1775

    Article  CAS  Google Scholar 

  • Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206:73–93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Program for Ecotoxicology (PNETOX), the French Minister of Ecology and Sustainable Development and the IMOPHYS (Integration of molecular and physiologic responses to organic contaminants in coastal area) group of research teams for research funding. They want also to acknowledge the “Region Aquitaine” and the French National Council for Scientific Research (CNRS) for providing the PhD grant of M. Le Dû-Lacoste. The anonymous reviewers are also acknowledged for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Budzinski.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Dû-Lacoste, M., Akcha, F., Dévier, MH. et al. Comparative study of different exposure routes on the biotransformation and genotoxicity of PAHs in the flatfish species, Scophthalmus maximus . Environ Sci Pollut Res 20, 690–707 (2013). https://doi.org/10.1007/s11356-012-1388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1388-9

Keywords

Navigation