Skip to main content
Log in

Distribution of metals and trace elements in adult and juvenile penguins from the Antarctic Peninsula area

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The presence of metals in the Antarctic environment is principally a natural phenomenon caused by geochemical characteristics of the region, although some anthropogenic activities can increase these natural levels. Antarctic penguins present several of the characteristics of useful sentinels of pollution in Antarctica such as they are long-lived species situated at the top of food web. The concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd, and Pb were determined by inductively coupled plasma–mass spectrometry in samples of liver, kidney, muscle, bone, feather, and stomach contents of gentoo, chinstrap, and Adélie penguin (12 adults, five juveniles) from carcasses of naturally dead individuals collected opportunistically in the Antarctic Peninsula area. The obtained results showed that accumulation and magnification of several elements can be occurring, so that Cd and Se reached levels potentially toxic in some specimens. The presence of human activities seems to be increasing the presence of toxic metals such as Mn, Cr, Ni, or Pb in penguins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alam IA, Sadiq M (1993) Metal concentrations in Antarctic sediments samples collected during the Trans-Antarctica 1990 expedition. Mar Pollut Bull 26:523–527

    Article  CAS  Google Scholar 

  • Almendros J, Ibáñez JM, Alguacil G, Del Pezzo E, Ortiz R (1997) Array tracking of the volcanic tremor source at Deception Island, Antarctica. Geophys Res Lett 24:3069–3072

    Article  Google Scholar 

  • Ancora S, Volpi V, Olmastroni S, Focardi S, Leonzio C (2002) Assumption and elimination of trace elements in Adélie penguins from Antarctica: a preliminary study. Mar Environ Res 54:341–344

    Article  CAS  Google Scholar 

  • Andrade S, Poblet A, Scagliola M, Vodopivez C, Curtosi A, Pucci A et al (2001) Distribution of heavy metals in surface sediments from an Antarctic marine ecosystem. Environ Monit Assess 66:147–158

    Article  CAS  Google Scholar 

  • ATSDR (2005) Toxicological profile for Nickel. Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2007) Toxicological profile for Arsenic. U.S. Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • Ballatori N (2002) Transport of toxic metals by molecular mimicry. Environ Health Perspect 110:689–694

    Article  CAS  Google Scholar 

  • Barbieri E, de Andrade PE, Filippini A, Souza dos Santos I, Borges CA (2010) Assessment of trace metal concentration in feathers of seabird (Larus dominicanus) sampled in the Florianópolis, SC, Brazilian coast. Environ Monit Assess 169:631–638

    Article  CAS  Google Scholar 

  • Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400:212–226

    Article  CAS  Google Scholar 

  • Bargagli R, Nelli L, Ancora S, Focardi S (1996) Elevated cadmium accumulation in marine organisms from Terra Nova Bay (Antarctica). Polar Biol 16:513–520

    Article  Google Scholar 

  • Bargagli R, Monaci F, Sánchez-Hernández JC, Cateni D (1998) Biomagnification of mercury in an Antarctic marine coastal food web. Mar Ecol Prog Ser 169:65–76

    Article  CAS  Google Scholar 

  • Braune B, Noble D (2009) Environmental contaminants in Canadian shorebirds. Environ Monit Assess 148:185–204

    Article  CAS  Google Scholar 

  • Burger J (2008) Assessment and management of risk to wildlife from cadmium. Sci Total Environ 389:37–45

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M (2000) Metal levels in feathers of 12 species of seabirds from Midway Atoll in the northern Pacific Ocean. Sci Total Environ 257:37–52

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M (2004) Marine birds as sentinels of environmental pollution. Ecohealth 1:263–274

    Article  Google Scholar 

  • Burger J, Gochfeld M, Sullivan K, Irons D, McKnight A (2008) Arsenic, cadmium, chromium, lead, manganese, mercury, and selenium in feathers of black-legged Kittiwake (Rissa tridactyla) and Black Oystercatcher (Haematopus bachmani) from Prince William Sound, Alaska. Sci Total Environ 398:20–25

    Article  CAS  Google Scholar 

  • Caccia VG, Millero FJ, Palanques A (2003) The distribution of trace metals in Florida Bay sediments. Mar Pollut Bull 46:1420–1433

    Article  CAS  Google Scholar 

  • Campbell L, Norstrom R, Hobson K, Muir D, Backus S, Fisk A (2005) Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci Total Environ 351–352:247–263

    Article  Google Scholar 

  • Claridge GGC, Campbell IB, Powell HKJ, Amin ZH, Balks M (1995) Heavy metal contamination in some soils of the McMurdo Sound region, Antarctica. Antarct Sci 7:9–14

    Article  Google Scholar 

  • Curtosi A, Pelletier E, Vodopivez C, St Louis R, Mac Cormack WP (2010) Presence and distribution of persistent toxic substances in sediments and marine organisms of Potter Cove, Antarctica. Arch Environ Contam Toxicol 59:582–592

    Article  CAS  Google Scholar 

  • De Moreno JEA, Gerpe MS, Moreno VJ, Vodopivez C (1997) Heavy metals in Antarctic organisms. Polar Biol 17:131–140

    Article  Google Scholar 

  • Deheyn DD, Gendreau P, Baldwin RJ, Latz MI (2005) Evidence for enhanced bioavailability of trace elements in the marine ecosystem of Deception Island, a volcano in Antarctica. Mar Environ Res 60:1–33

    Article  CAS  Google Scholar 

  • Dos Santos IR, Silva-Filho EV, Schaefer CE, Albuquerque-Filho MR, Campos LS (2005) Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar Pollut Bull 50:185–194

    Article  CAS  Google Scholar 

  • Eisler R (1981) Trace metal concentrations in marine organisms. Pergamon, New York

    Google Scholar 

  • Eisler R (1985) Selenium hazards to fish, wildlife and invertebrates: a synoptic review. U.S. Fish and Wildlife Service, Biological Report 85 (1.5), Washington, DC

  • Eisler R (1998) Nickel hazards to fish, wildlife, and invertebrates: a synoptic review. Geological Survey, Biological Resources Division, Biological Science Report, Washington, DC

  • Furness RW (1996) Cadmium in birds. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife: interpreting tissue concentrations. Lewis, Boca Raton, pp 389–404

    Google Scholar 

  • Gochfeld M, Belant JL, Shukla T, Benson T, Burger J (1996) Heavy metals in laughing gulls: gender, age and tissue differences. Environ Toxicol Chem 15:2275–2283

    Article  CAS  Google Scholar 

  • Heinz GH (1996) Selenium in birds. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife: interpreting tissue concentrations. Lewis, Boca Raton, pp 447–458

    Google Scholar 

  • Honda K, Yamamoto Y, Hidaka H, Tatsukawa R (1986) Heavy metal accumulation in Adélie penguin, Pygoscelis adeliae, and their variations with the reproductive process. Mem Natl Inst Polar Res 40:443–453

    Google Scholar 

  • IAATO (2010) 2009–2010 tourism summary. International Association of Antarctica Tour Operators Web. http://www.iaato.org/tourism_stats.html. Accessed 22 Dec 2011

  • Jerez S, Motas M, Cánovas RA, Talavera J, Almela RM, Bayón A (2010) Accumulation and tissue distribution of heavy metals and essential elements in loggerhead turtles (Caretta caretta) from Spanish Mediterranean coastline of Murcia. Chemosphere 78:256–264

    Article  CAS  Google Scholar 

  • Jerez S, Motas M, Palacios MJ, Valera F, Cuervo JJ, Barbosa A (2011) Concentration of trace elements in feathers of three Antarctic penguins: geographical and interspecific differences. Environ Pollut 159:2412–2419

    Article  CAS  Google Scholar 

  • Kim J, Shin JR, Koo TH (2009) Heavy metal distribution in some wild birds from Korea. Arch Environ Contam Toxicol 56:317–324

    Article  CAS  Google Scholar 

  • Koizumi N, Murata K, Hayashi C, Nishio H, Goji J (2008) High cadmium accumulation among humans and primates: comparison across various mammalian species—a study from Japan. Biol Trace Elem Res 121:205–214

    Article  CAS  Google Scholar 

  • Kubota R, Kunito T, Tanabe S (2001) Arsenic accumulation in the liver tissue of marine mammals. Environ Pollut 115:303–312

    Article  CAS  Google Scholar 

  • Kureishy TW, Gupta RS, Mesquita A, Sanzgiry S (1993) Heavy metals in some parts of Antarctica and the southern Indian Ocean. Mar Pollut Bull 26:651–652

    Article  CAS  Google Scholar 

  • Larison JR, Likens GE, Fitzpatrick JW, Crock JG (2000) Cadmium toxicity among wildlife in the Colorado Rocky Mountains. Nature 406:181–183

    Article  CAS  Google Scholar 

  • Lemley AD (1993) Guidelines for evaluating selenium data form aquatic monitoring and assessment studies. Environ Monit Assess 28:83–100

    Article  Google Scholar 

  • Liu X, Zhao S, Sun L, Yin X, Xie Z, Honghao L et al (2006) P and trace metal contents in biomaterials, soils, sediments and plants in colony of red-footed booby (Sula sula) in the Dongdao Island of South China Sea. Chemosphere 65:707–715

    Article  CAS  Google Scholar 

  • Lucia M, André JM, Gontier K, Diot N, Veiga J, Davail S (2010) Trace element concentrations (mercury, cadmium, copper, zinc, lead, aluminium, nickel, arsenic, and selenium) in some aquatic birds of the Southwest Atlantic Coast of France. Arch Environ Contam Toxicol 58:844–853

    Article  CAS  Google Scholar 

  • Mas A (1993) Elementos esenciales. In: Mas A, Azcue JM (eds) Metales en Sistemas Biológicos. Promociones y Publicaciones Universitarias, Barcelona, pp 105–142 (in Spanish)

    Google Scholar 

  • McLaughlin MJ, Tiler KG, Naidu R, Stevens DP (1996) Review: the behaviour and environmental impact of contaminants in fertilizers. Aust J Soil Res 34:1–54

    Article  CAS  Google Scholar 

  • Mendes P, Eira C, Torres J, Soares AMVM, Melo P, Vingada J (2008) Toxic element concentration in the Atlantic gannet Morus bassanus (Pelecaniformes, Sulidae) in Portugal. Arch Environ Contam Toxicol 55:503–509

    Article  CAS  Google Scholar 

  • Metcheva R, Yurukova L, Teodorovac S, Nikolova E (2006) The penguin feathers as bioindicator of Antarctica environmental state. Sci Total Environ 362:259–265

    Article  CAS  Google Scholar 

  • Mispagel C, Turoczy N, Stagnitti F (2003) Copper, manganese, lead and zinc concentrations on Eucalyptus sp. leaves in a small coastal town. Bull Environ Contam Toxicol 71:617–624

    Article  CAS  Google Scholar 

  • Nam DH, Anan Y, Ikemoto T, Okabe Y, Kim EY, Subramanian A et al (2005) Specific accumulation of 20 trace elements in great cormorants (Phalacrocorax carbo) from Japan. Environ Pollut 134:503–514

    Article  CAS  Google Scholar 

  • Neff JM (1997) Ecotoxicology of arsenic in the marine environment. Environ Toxicol Chem 16:917–927

    CAS  Google Scholar 

  • Norheim G (1987) Levels and interactions of heavy metals in seabirds from Svalbard and the Antarctic. Environ Pollut 47:83–94

    Article  CAS  Google Scholar 

  • Nygard T, Lie E, Rov N, Steinnes E (2001) Metal dynamics in an Antarctic food chain. Mar Pollut Bull 42:598–602

    Article  CAS  Google Scholar 

  • Ohlendorf HM (1989) Bioaccumulation and effects of selenium in wildlife. In: Jacobs LW (ed) Selenium in agriculture and the environment. SSSA special publication no. 23. American Society of Agronomy and Soil Science Society of America, Madison, pp 133–177

    Google Scholar 

  • Perez-Lopez MP, Cid F, Oropesa L, Fidalgo LE, Beceiro AL, Soler F (2006) Heavy metal and arsenic content in seabirds affected by the Prestige oil spill on the Galician coast (NW Spain). Sci Total Environ 359:209–220

    Article  CAS  Google Scholar 

  • Poblet A, Andrade S, Scagliola M, Vodopivez C, Curtosi A, Pucci A et al (1997) The use of epilithic Antarctic lichens (Usnea aurantiacoatra and U. antartica) to determine deposition patterns of heavy metals in the Shetland Islands, Antarctica. Sci Total Environ 207:187–194

    Article  CAS  Google Scholar 

  • Rey J, Somoza L, Martínez-Frías J (1995) Tectonic, volcanic and hydrothermal event sequence on Deception Island (Antarctica). Geo-Mar Lett 15:1–8

    Article  CAS  Google Scholar 

  • Ribeiro AR, Eira C, Torres J, Mendes P, Miquel J, Soares AMVM et al (2009) Toxic element concentrations in the razorbill Alca torda (Charadriiformes, Alcidae) in Portugal. Arch Environ Contam Toxicol 56:588–595

    Article  CAS  Google Scholar 

  • Rodrigue J, Champoux L, Leclair D, Duchesne JF (2007) Cadmium concentrations in tissues of willow ptarmigan (Lagopus lagopus) and rock ptarmigan (Lagopus muta) in Nunavik, Northern Québec. Environ Pollut 147:642–647

    Article  CAS  Google Scholar 

  • Sánchez-Hernández JC (2000) Trace element contamination in Antarctic ecosystems. Rev Environ Contam Toxicol 166:82–127

    Google Scholar 

  • Scheifler R, Gauthier-Clerc M, Le Bohec C, Crini N, Coeurdassier M, Badot PM et al (2005) Mercury concentrations in king penguin (Aptenodytes patagonicus) feathers at Crozet Islands (sub-Antarctic): temporal trend between 1966–1974 and 2000–2001. Environ Toxicol Chem 24:125–128

    Article  CAS  Google Scholar 

  • Smichowski P, Vodopivez C, Muñoz-Olivas R, Gutierrez AM (2006) Monitoring trace elements in selected organs of Antarctic penguin (Pygoscelis adeliae) by plasma-based techniques. Microchem J 82:1–7

    Article  CAS  Google Scholar 

  • Smith P, Cobb G, Godard-Codding C, Hoff D, McMurry S, Rainwater T et al (2007) Contaminant exposure in terrestrial vertebrates. Environ Pollut 150:41–64

    Article  CAS  Google Scholar 

  • Stewart FM, Phillips RA, Catry P, Furness RW (1997) Influence of species, age and diet on mercury concentrations in Shetland seabirds. Mar Ecol Prog Ser 151:237–244

    Article  CAS  Google Scholar 

  • Stout JH, Trust KA, Cochrane JK, Suydam RS, Quakenbush LT (2002) Environmental contaminants in four eider species from Alaska and arctic Russia. Environ Pollut 119:215–226

    Article  CAS  Google Scholar 

  • Sun L, Xie Z (2001) Changes in lead concentration in Antarctic penguin droppings during the past 3,000 years. Environ Geol 40:1205–1208

    Article  CAS  Google Scholar 

  • Szefer P, Czarnowski W, Pempkowiak J, Holm E (1993a) Mercury and major essential elements in seals, penguins, and other representative fauna of the Antarctic. Arch Environ Contam Toxicol 25:422–427

    Article  CAS  Google Scholar 

  • Szefer P, Pempkowiak J, Skwarzec B, Bojanowski R, Holm E (1993b) Concentration of selected metals in penguins and other representative fauna of the Antarctica. Sci Total Environ 138:281–288

    Article  CAS  Google Scholar 

  • homson MRA, Pankhurst RJ, Clarkson PD (2001) The Antarctic Peninsula - a late Mesozoic-Cenozoic arc (review). In: Oliver RL, James PR, Jago JB (eds) Antarctic Earth Science. Cambridge University Press, Cambridge, pp 289–294

  • Vodopivez C, Curtosi A (1998) Trace metals in some invertebrates, fishes and birds from Potter Cove. In: Wiencke C, Ferreyra G, Arntz W, Rinaldi C (eds) The Potter Cove coastal ecosystem, Antarctica. Ber Polarforsch, Bremerhaven, pp 296–303

    Google Scholar 

  • Walsh PM (1990) The use of seabirds as monitors of heavy metals in the marine environment. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC, Boca Raton, pp 183–204

    Google Scholar 

  • Włostowski T, Dmowski K, Bonda-Ostaszewska E (2010) Cadmium accumulation, metallothionein and glutathione levels, and histopathological changes in the kidneys and liver of magpie (Pica pica) from a zinc smelter area. Ecotoxicology 19:1066–1073

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Spanish polar ship Las Palmas, the Spanish polar base “Gabriel de Castilla,” the Argentinean polar base “Carlini,” the Instituto Antártico Argentino and the Maritime Technology Unit (CSIC) for providing logistic support. We also thank the Scientific Instrumentation Service (University of Murcia) and the Technological Instrumentation Service (Technical University of Cartagena) for their analytical support. Permissions to work in the study area were given by the Spanish Polar Committee. This study has been funded by the Spanish Ministry of Science and Innovation CGL204-01348, POL2006-05175, and CGL2007-60369. This study is a contribution to the International Polar Year project 172 BirdHealth and to Pinguclim project. Finally, the authors gratefully acknowledge the feedback provided by anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Jerez.

Additional information

Responsible editor: Stuart Simpson

Capsule

Tissues of Antarctic penguins presented high levels of some toxic metals as a result of bioaccumulation and/or biomagnification phenomena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jerez, S., Motas, M., Benzal, J. et al. Distribution of metals and trace elements in adult and juvenile penguins from the Antarctic Peninsula area. Environ Sci Pollut Res 20, 3300–3311 (2013). https://doi.org/10.1007/s11356-012-1235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1235-z

Keywords

Navigation