Skip to main content

Advertisement

Log in

Occurrence and toxicity of antimicrobial triclosan and by-products in the environment

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Introduction and aims

A review was undertaken on the occurrence, toxicity, and degradation of triclosan (TCS; 5-chloro-2,4-dichlorophenoxy)phenol) in the environment. TCS is a synthetic, broad-spectrum antibacterial agent incorporated in a wide variety of household and personal care products such as hand soap, toothpaste, and deodorants but also in textile fibers used in a range of other consumer products (e.g., toys, undergarments and cutting boards among other things).

Occurrence

Because of its partial elimination in sewage treatment plants, most reports describe TCS as one of the most commonly encountered substances in solid and water environmental compartments. It has been detected in a microgram per liter or microgram per kilogram level in sewage treatment plants (influents, effluents, and sludges), natural waters (rivers, lakes, and estuarine waters), and sediments as well as in drinking water.

Toxicity

Moreover, due to its high hydrophobicity, TCS can accumulate in fatty tissues and has been found in fish and human samples (urine, breast milk, and serum). TCS is known to be biodegradable, photo-unstable, and reactive towards chlorine and ozone.

Discussion

As a consequence, it can be transformed into potentially more toxic and persistent compounds, such as chlorinated phenols and biphenyl ethers after chlorination, methyl triclosan after biological methylation, and chlorinated dibenzodioxins after photooxidation. The toxicity of TCS toward aquatic organisms like fish, crustaceans, and algae has been demonstrated with EC50 values near TCS environmental concentrations. It has even been shown to produce cytotoxic, genotoxic, and endocrine disruptor effects.

Conclusion

Furthermore, the excessive use of TCS is suspected to increase the risk of emergence of TCS-resistant bacteria and the selection of resistant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe KI, Tanaka K (1997) Fe3+ and UV-enhanced ozonation of chlorophenolic compounds in aqueous medium. Chemosphere 35:2837–2847

    Article  CAS  Google Scholar 

  • Adolfsson-Erici M, Petterson M, Parkkonen J, Sturve J (2002) Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46:1485–1489

    Article  CAS  Google Scholar 

  • Agüera A, Fernández-Alba AR, Piedra L, Mézcua M, Gómez MJ (2003) Evaluation of triclosan and biphenylol in marine sediments and urban wastewaters by pressurized liquid extraction and solid phase extraction followed by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. Anal Chim Acta 480:193–205

    Article  CAS  Google Scholar 

  • Aiello AE, Marshall B, Levy SB, Della-Latta P, Larson E (2004) Relationship between triclosan and susceptibilities of bacteria isolated from hands in the community. Antimicrob Agents Chemother 48:2973–2979

    Article  CAS  Google Scholar 

  • Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh-Englund G (2006) Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci Total Environ 372:87–93

    Article  CAS  Google Scholar 

  • Allmyr M, Harden F, Toms LML, Mueller JF, McLachlan MS, Adolfsson-Erici M, Sandborgh-Englund G (2008) The influence of age and gender on triclosan concentrations in Australian human blood serum. Sci Total Environ 393:162–167

    Article  CAS  Google Scholar 

  • Al-Rajab AJ, Sabourin L, Scott A, Lapen DR, Topp E (2009) Impact of biosolids on the persistence and dissipation pathways of triclosan and triclocarban in an agricultural soil. Sci Total Environ 407:5978–5985

    Article  CAS  Google Scholar 

  • An J, Zhou Q, Sun Y, Xu Z (2009) Ecotoxicological effects of typical personal care products on seed germination and seedling development of wheat (Triticum aestivum L.). Chemosphere 76:1428–1434

    Article  CAS  Google Scholar 

  • Antoniou CV, Koukouraki EE, Diamadopoulos E (2009) Analysis of selected pharmaceutical compounds and endocrine disruptors in municipal wastewater using solid-phase microextraction and gas chromatography. Water Res 81:664–669

    Article  CAS  Google Scholar 

  • Aragon DM, Ruidiaz MA, Vargas EF, Bregni C, Chiappetta DA, Sosnik A, Martinez F (2008) Solubility of the antimicrobial agent triclosan in organic solvents of different hydrogen bonding capabilities at several temperatures. J Chem Eng Data 53:2576–2580

    Article  CAS  Google Scholar 

  • Aranami K, Readman JW (2007) Photolytic degradation of triclosan in freshwater and seawater. Chemosphere 66:1052–1056

    Article  CAS  Google Scholar 

  • Balmer ME, Poiger T, Droz C, Romanin K, Bergqvist PA, Müller MD, Buser HR (2004) Occurrence of methyl triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environ Sci Technol 38:390–395

    Article  CAS  Google Scholar 

  • Behera SK, Oh SY, Park HS (2010) Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid. J Hazard Mater 179:684–691

    Article  CAS  Google Scholar 

  • Benitez FJ, Beltran-Heredia J, Acero JL, Rubio FJ (2000) Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes. Chemosphere 41:1271–1277

    Article  CAS  Google Scholar 

  • Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 43:597–603

    Article  CAS  Google Scholar 

  • Bester K (2003) Triclosan in a sewage treatment process—balances and monitoring data. Water Res 37:3891–3896

    Article  CAS  Google Scholar 

  • Bester K (2005) Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Arch Environ Contam Toxicol 49:9–17

    Article  CAS  Google Scholar 

  • Bhargava HN, Leonard PA (1996) Triclosan: applications and safety. Am J Infect Control 24:209–218

    Article  CAS  Google Scholar 

  • Binelli A, Cogni D, Parolini M, Riva C, Provini A (2009a) Cytotoxic and genotoxic effects of in vivo exposure to triclosan and trimethoprim on zebra mussel (Dreissena polymorpha) hemocytes. Comp Biochem Physiol C 150:50–56

    CAS  Google Scholar 

  • Binelli A, Cogni D, Parolini M, Riva C, Provini A (2009b) In vivo experiments for the evaluation of genotoxic and cytotoxic effects of triclosan in zebra mussel hemocytes. Aquat Toxicol 91:238–244

    Article  CAS  Google Scholar 

  • Birosová L, Mikulásová M (2009) Development of triclosan and antibiotic resistance in Salmonella enterica serovar Typhimurium. J Med Microbiol 58:436–441

    Article  CAS  Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532

    Article  CAS  Google Scholar 

  • Brun EM, Bonet E, Puchades M, Maquieira A (2008) Selective enzyme-linked immunosorbent assay for triclosan. Application to wastewater treatment plant effluents. Environ Sci Technol 42:1665–1672

    Article  CAS  Google Scholar 

  • Buth JM, Grandbois M, Vikesland PJ, McNeill K, Arnold WA (2009) Aquatic photochemistry of chlorinated triclosan derivatives: potential source of polychlorodibenzo-p-dioxins. Environ Toxicol Chem 28:2555–2563

    Article  CAS  Google Scholar 

  • Buth JM, Steen PO, Sueper C, Blumentritt D, Vikesland PJ, Arnold WA, McNeill K (2010) Dioxins photoproducts of triclosan and its chlorinated derivatives in sediment cores. Environ Sci Technol 44:4545–4551

    Article  CAS  Google Scholar 

  • Cajthaml T, Kresinova Z, Svobodova K, Moder M (2009) Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 75:745–750

    Article  CAS  Google Scholar 

  • Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Urinary concentrations of triclosan in the U.S. population: 2003–2004. Environ Health Perspect 116:303–307

    Article  CAS  Google Scholar 

  • Canosa P, Morales S, Rodríguez I, Rubí E, Cela R, Gómez M (2005) Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine. Anal Bioanal Chem 383:1119–1126

    Article  CAS  Google Scholar 

  • Canosa P, Pérez-Palacios D, Garrido-Lopez A, Tena MT, Rodriguez I, Rubi E, Cela R (2007a) Pressurized liquid extraction with in-cell clean-up followed by gas chromatography-tandem mass spectrometry for the selective determination of parabens and triclosan in indoor dust. J Chromatogr A 1161:105–112

    Article  CAS  Google Scholar 

  • Canosa P, Rodríguez I, Rubí E, Cela R (2007b) Determination of parabens and triclosan in indoor dust using matrix solid-phase dispersion and gas chromatography with tandem mass spectrometry. Anal Chem 79:1675–1681

    Article  CAS  Google Scholar 

  • Cantwell MG, Wilson BA, Zhu J, Wallace GT, King JW, Olsen CR, Burgess RM, Smith JP (2010) Temporal trends of triclosan contamination in dated sediment cores from four urbanized estuaries: evidence of preservation and accumulation. Chemosphere 78:347–352

    Article  CAS  Google Scholar 

  • Capdevielle M, Egmond RV, Whelan M, Versteeg D, Hofmann-Kamensky M, Inauen J, Cunningham V, Voltering D (2008) Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Integr Environ Assess Manage 4:15–23

    Article  CAS  Google Scholar 

  • Cha J, Cupples AM (2009) Detection of the antimicrobials triclocarban and triclosan in agricultural soils following land application of municipal biosolids. Water Res 43:2522–2530

    Article  CAS  Google Scholar 

  • Cha J, Cupples AM (2010) Triclocarban and triclosan biodegradation at field concentrations and the resulting leaching potentials in three agricultural soils. Chemosphere 81:494–499

    Article  CAS  Google Scholar 

  • Chalew ET, Halden RU (2009) Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J Am Water Resour Assoc 45:4–13

    Article  CAS  Google Scholar 

  • Chau WC, Wu JL, Cai Z (2008) Investigation of levels and fate of triclosan in environmental waters from the analysis of gas chromatography coupled with ion trap mass spectrometry. Chemosphere 73:S13–S17

    Article  CAS  Google Scholar 

  • Chen J, Ahn KC, Gee NA, Gee SJ, Hammock BD, Lasley BL (2007) Antiandrogenic properties of parabens and other phenolic containing small molecules in personal care products. Toxicol Appl Pharmacol 221:278–284

    Article  CAS  Google Scholar 

  • Chen Z, Song Q, Cao G, Chen Y (2008) Photolytic degradation of triclosan in the presence of surfactants. Chemical Papers 62:608–615

    Article  CAS  Google Scholar 

  • Chen X, Pauly U, Rehfus S, Bester K (2009) Removal of personal care compounds from sewage sludge in reed bed container (lysimeter) studies—effects of macrophytes. Sci Total Environ 407:5743–5749

    Article  CAS  Google Scholar 

  • Chen Z, Cao G, Song Q (2010) Photo-polymerization of triclosan in aqueous solution induced by ultraviolet radiation. Environ Chem Lett 8:33–37

    Article  CAS  Google Scholar 

  • Chen X, Nielsen JL, Furgal C, Liu Y, Lolas IB, Bester K (2011) Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chemosphere 84:452–456

    Article  CAS  Google Scholar 

  • Chiron S, Minero C, Vione D (2007) Occurrence of 2,4-dichlorophenol and of 2,4-dichloro-6-nitrophenol in the Rhone River Delta (Southern France). Environ Sci Technol 41:3127–3133

    Article  CAS  Google Scholar 

  • Chu S, Metcalfe CD (2007) Simultaneous determination of triclocarban and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry. J Chromatogr A 1164:212–218

    Article  CAS  Google Scholar 

  • Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR, Schweizer HP (2001) Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overewpressing MexCD-OprJ. Antimicrob Agents Chemother 45:428–432

    Article  CAS  Google Scholar 

  • Clarke BO, Smith SR (2011) Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int 37:226–247

    Article  CAS  Google Scholar 

  • Coogan MA, La Point TW (2008) Snail bioaccumulation of triclocarban, triclosan, and methyltriclosan in a North Texas, USA stream affected by wastewater treatment plant runoff. Environ Toxicol Chem 27:1788–1793

    Article  CAS  Google Scholar 

  • Coogan MA, Edziyie RE, La Point TW, Venables BJ (2007) Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream. Chemosphere 67:1911–1918

    Article  CAS  Google Scholar 

  • Crofton KM, Paul KB, DeVito MJ, Hedge JM (2007) Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine. Environ Toxicol Pharmacol 24:194–197

    Article  CAS  Google Scholar 

  • Cuderman P, Heath E (2007) Determination of UV filters and antimicrobial agents in environmental water samples. Anal Bioanal Chem 387:1343–1350

    Article  CAS  Google Scholar 

  • Da Salva SJ, King BM, Lin YJ, Lin YJ (1989) Triclosan: a safety profile. Am J Dent 2:185–196

    Google Scholar 

  • Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31:285–311

    Article  CAS  Google Scholar 

  • Dayan AD (2007) Risk assessment of triclosan [Irgasan®] in human breast milk. Food Chemical Toxicol 45:125–129

    Article  CAS  Google Scholar 

  • DeLorenzo ME, Fleming J (2008) Individual and mixture effects of selected pharmaceuticals and personal care products on the marine phytoplankton species Dunaliella tertiolecta. Arch Environ Contam Toxicol 54:203–210

    Article  CAS  Google Scholar 

  • DeLorenzo ME, Keller JM, Arthur CD, Finnegan MC, Harper HE, Winder VL, Zdankiewicz DL (2008) Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Environ Toxicol 23:224–232

    Article  CAS  Google Scholar 

  • Dirtu AC, Roosens L, Geens T, Gheorge A, Neels H, Covaci A (2008) Simultaneous determination of bisphenol A, triclosan, and tetrabromobisphenol A in human serum using solid-phase extraction and gas chromatography-electron capture negative-ionization mass spectrometry. Anal Bioanal Chem 391:1175–1181

    Article  CAS  Google Scholar 

  • Dussault E, Balakrishnan V, Sverko E, Solomon K, Sibley P (2008) Toxicity of human pharmaceutical and personal care products to benthic invertebrates. Environ Toxicol Chem 27:425–432

    Article  CAS  Google Scholar 

  • Dye C, Schlabach M, Green J, Remberger M, Kaj L, Palm-Cousins A, Brorström-Lundén E (2007) Bronopol, resorcinol, m-cresol and triclosan in the Nordic environment. Nordic Council of Ministers Copenhagen.TemaNord 585:83 pp. http://www.nordicscreening.org/index.php

    Google Scholar 

  • Edwards M, Topp E, Metcalfe CD, Li H, Gottschall N, Bolton P (2009) Pharmaceutical and personal care products in tile drainage following surface spreading and injection of dewatered municipal biosolids to an agricultural field. Sci Tot Environ 407:4220–4230

    Article  CAS  Google Scholar 

  • European Commission (2002) Opinion on: Triclosan resistance. Adopted by the SSC at its meeting of 27–28 June 2002. http://ec.europa.eu/food/fs/sc/sccp/out182_en.pdf

  • Fair PA, Lee HB, Adams J, Darling C, Pacepavicius G, Alaee M, Bossart GD, Henry N, Muir D (2009) Occurrence of triclosan in plasma of wild Atlantic bottlenose dolphins (Tursiops truncatus) and in their environment. Environ Pollut 157:2248–2254

    Article  CAS  Google Scholar 

  • Farré M, Asperger D, Kantiani L, Gonzales S, Petrovic M, Barcelo D (2007) Assessment of the acute toxicity of triclosan and methyl triclosan in wastewater based on the bioluminescence inhibition of Vibrio fischeri. Anal Bioanal Chem 390:1999–2007

    Article  CAS  Google Scholar 

  • Federle TW, Kaiser SK, Nuck BA (2002) Fate and effects of triclosan in activated sludge. Environ Toxicol Chem 21:1330–1337

    Article  CAS  Google Scholar 

  • Ferrer I, Mezcua M, Gomez MJ, Thurman EM, Aguera A, Hernando MD, Fernandez-Alba AR (2004) Liquid chromatography/time-of-flight mass spectrometric analyses for the elucidation of the photodegradation products of triclosan in wastewater samples. Rapid Commun Mass Spectrom 18:443–450

    Article  CAS  Google Scholar 

  • Fiss EM, Rule KL, Vikesland PJ (2007) Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products. Environ Sci Technol 41:2387–2394

    Article  CAS  Google Scholar 

  • Foran CM, Bennett ER, Benson WH (2000) Developmental evaluation of a potential non-steroidal estrogen: triclosan. Marine Environ Res 50:153–156

    Article  CAS  Google Scholar 

  • Franz S, Altenburger R, Heilmeier H, Schmitt-Jansen M (2008) What contributes to the sensitivity of microalgae to triclosan? Aquat Toxicol 90:102–108

    Article  CAS  Google Scholar 

  • Fuchsman P, Lyndall J, Bock M, Lauren D, Barber T, Leigh K, Perruchon E, Capdevielle M (2010) Terrestrial ecological risk evaluation for triclosan in land-applied biosolids. Integr Environ Assess Manage 6:405–418

    Article  CAS  Google Scholar 

  • Gee RH, Charles A, Taylor N, Darbre PD (2008) Oestrogenic and androgenic activity of triclosan in breast cancer cells. J Appl Toxicol 28:78–91

    Article  CAS  Google Scholar 

  • Geens T, Roosens L, Neels H, Covaci A (2009) Assessment of human exposure to bisphenol-A, triclosan and tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere 76:755–760

    Article  CAS  Google Scholar 

  • Glaser A (2004) The ubiquitous triclosan, a common antibacterial agent exposed. Pesticides and You 24:12–17. http://www.beyondpesticides.org/pesticides/factsheets/Triclosan%20cited.pdf

  • Gomez MJ, Martinez Bueno MJ, Lacorte S, Fernandez-Alba AR, Agüera A (2007) Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 66:993–1002

    Article  CAS  Google Scholar 

  • Gomez-Escalada MG, Harwood JL, Maillard JY, Ochs D (2005) Triclosan inhibition of fatty acids synthesis and its effect on growth of Escherichia coli and Pseudomonas aeruginosa. J Antimicrob Chemother 55:879–882

    Article  CAS  Google Scholar 

  • González-Mariño I, Quintana JB, Rodriguez I, Cela R (2009) Simultaneous determination of parabens, triclosan and triclocarban in water by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 23:1756–1766

    Article  CAS  Google Scholar 

  • González-Mariño I, Benito Quintana J, Rodríguez I, Schrader S, Moeder M (2011) Fully automated determination of parabens, triclosan and methyl triclosan in wastewater by microextraction by packed sorbents and gas chromatography–mass spectrometry. Anal Chim Acta 684:59–66

    Article  CAS  Google Scholar 

  • Guo JH, Li XY, Cao XL, Li Y, Wang XZ, Xu XB (2009) Determination of triclosan, triclocarban and methyl-triclosan in aqueous samples by dispersive liquid–liquid microextraction combined with rapid liquid chromatography. J Chromatogr A 1216:3038–3043

    Article  CAS  Google Scholar 

  • Halden RU, Paull DH (2005) Co-occurrence of triclocarban and triclosan in US water resources. Environ Sci Technol 39:1420–1426

    Article  CAS  Google Scholar 

  • Hanioka N, Omae E, Nishimura T, Jinno H, Onodera S, Yoda R, Ando M (1996) Interaction of 2,4,4′-trichloro-2′-hydroxydiphenyl ether with microsomal cytochrome P450-dependent monooxygenases in rat liver. Chemosphere 33:265–276

    Article  CAS  Google Scholar 

  • Harada A, Komori K, Nakada N, Kitamura K, Suzuki Y (2008) Biological effects of PPCPs on aquatic lives and evaluation of river waters affected by different wastewater treatment level. Water Sci Technol 58:1541–1546

    Article  CAS  Google Scholar 

  • Hay AG, Dees PM, Sayler GS (2001) Growth of a bacterial consortium on triclosan. FEMS Microbiol Ecol 36:105–112

    Article  CAS  Google Scholar 

  • Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO (1999) Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274:11110–11114

    Article  CAS  Google Scholar 

  • Heidler J, Halden RU (2007) Mass balance assessment of triclosan removal during conventional sewage treatment. Chemosphere 66:362–369

    Article  CAS  Google Scholar 

  • Heidler J, Sapkota A, Halden RU (2006) Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment. Environ Sci Technol 40:3634–3639

    Article  CAS  Google Scholar 

  • Hess-Wilson JK, Knudsen KE (2006) Endocrine disrupting compounds and prostate cancer. Cancer Lett 241:1–12

    Article  CAS  Google Scholar 

  • Hinther A, Bromba CM, Wulff JE, Helbing CC (2011) Effects of triclocarban, triclosan, and methyl triclosan on thyroid hormone action and stress in frog and mammalian culture systems. Environ Sci Technol 45:5395–5402

    Article  CAS  Google Scholar 

  • Hua W, Bennett ER, Letcher RJ (2005) Triclosan in waste and surface waters from the upper Detroit River by liquid chromatography–electrospray–tandem quadrupole mass spectrometry. Environ Int 31:621–630

    Article  CAS  Google Scholar 

  • Hundt K, Martin D, Hammer E, Jonas U, Kindermann MK, Schauer F (2000) Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl Environ Microbiol 66:4157–4160

    Article  CAS  Google Scholar 

  • Ishibashi H, Matsumura N, Hirano M, Matsuoka M, Shiratsuchi H, Ishibashi Y, Takao Y, Arizono K (2004) Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat Toxicol 67:167–179

    Article  CAS  Google Scholar 

  • Jacobs MN, Nolan GT, Hood SR (2005) Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicol Appl Pharmacol 209:123–133

    Article  CAS  Google Scholar 

  • James MO, Li W, Summerlot DP, Rawland-Faux L, Wood CE (2010) Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta. Environ Int 36:942–949

    Article  CAS  Google Scholar 

  • Johnson DR, Czechowska K, Chèvre N, Roelof van der Meer J (2009) Toxicity of triclosan, penconazole and metalaxyl on Caulobacter crescentus and a freshwater microbial community as assessed by flow cytometry. Environ Microbiol 11:1682–1691

    Article  CAS  Google Scholar 

  • Kanda R, Griffin P, James HA, Fothergill J (2003) Pharmaceutical and personal care products in sewage treatment works. J Environ Monit 5:823–830

    Article  CAS  Google Scholar 

  • Kanetoshi A, Ogawa H, Katsura E, Kaneshima H (1987) Chlorination of Irgasan and formation of dioxins from its chlorinated derivatives. J Chromatogr 389:139–153

    Article  CAS  Google Scholar 

  • Kantiani L, Farré M, Asperger D, Rubio F, Gonzalez S, Lopez de Alda MJ, Petrovic M, Shelver WL, Barcelo D (2008) Triclosan and methyl triclosan monitoring study in the northeast of Spain using a magnetic particle enzyme immunoassay and confirmatory analysis by gas chromatography–mass spectrometry. J Hydrol 361:1–9

    Article  CAS  Google Scholar 

  • Kawaguchi M, Ito R, Honda H, Endo N, Okanouchi N, Saito K, Seto Y, Nakazawa H (2008) Determination of urinary triclosan by stir bar sorptive extraction and thermal desorption–gas chromatography–mass spectrometry. J Chromatogr B 875:577–580

    Article  CAS  Google Scholar 

  • Kim MK, O’Keefe PW (2000) Photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in aqueous solutions and in organic solvents. Chemosphere 41:793–800

    Article  CAS  Google Scholar 

  • Kim JW, Ishibashi H, Yamauchi R, Ichikawa N, Takao Y, Hirano M, Koga M, Arizono K (2009) Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyurus) and fish (Oryzias latipes). J Toxicol Sci 34:227–232

    Article  CAS  Google Scholar 

  • Kinney CA, Furlong ET, Kolpin DW, Burkhardt MR, Zaugg SD, Werner SL, Bossio JP, Benotti MJ (2008) Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure. Environ Sci Technol 42:1863–1870

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Kookana RS, Ying GG, Waller NJ (2011) Triclosan: its occurrence, fate and effects in the Australian environment. Water Sci Technol 63:598–604

    Article  CAS  Google Scholar 

  • Kumar V, Balomajumder C, Roy P (2008) Disruption of LH-induced testosterone biosynthesis in testicular leydig cells by triclosan: probable mechanism of action. Toxicology 250:124–131

    Article  CAS  Google Scholar 

  • Kumar V, Chakraborty A, Kural MR, Roy P (2009) Alteration of testicular steroidogenesis and histopathology of reproductive system in male rats treated with triclosan. Reprod Toxicol 27:177–185

    Article  CAS  Google Scholar 

  • Kumar KS, Priya SM, Peck AM, Sajwan KS (2010) Mass loadings of triclosan and triclocarban from four wastewater treatment plants to three rivers and landfill in Savannah, Georgia, USA. Arch Environ Contam Toxicol 58:275–285

    Article  CAS  Google Scholar 

  • Kuster A, Pohl K, Altenburger R (2007) A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors. Env Sci Pollut Res 14:377–383

    Article  CAS  Google Scholar 

  • Kuster M, Lopez de Alda MJ, Hernando MD, Petrovic M, Martin-Alonso J, Barcelo D (2008) Analysis and occurrence of pharmaceuticals, estrogens, protestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). J Hydrol 358:112–123

    Article  CAS  Google Scholar 

  • Langdon KA, Warne MS, Smernik RJ, Shareef A, Kookana RS (2011) Selected personal care products and endocrine disruptors in biosolids: an Australia-wide survey. Sci Total Environ 409:1075–1081

    Article  CAS  Google Scholar 

  • Lapen DR, Topp E, Metcalfe CD, Li H, Edwards M, Gottschall N (2008) Pharmaceutical and personal care products in tile drainage following land application of municipal biosolids. Sci Total Environ 399:50–65

    Article  CAS  Google Scholar 

  • Latch DE, Packer JL, Stender BL, VanOverbeke J, Arnold WA, McNeill K (2005) Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environ Toxicol Chem 24:517–525

    Article  CAS  Google Scholar 

  • Leiker TJ, Abney SR, Goodbred SL, Rosen MR (2009) Identification of methyl triclosan and halogenated analogues in male common carp (Cyprinus carpio) from Las Vegas Bay and semipermeable membrane devices from Las Vegas Wash, Nevada. Sci Total Environ 407:2102–2114

    Article  CAS  Google Scholar 

  • Levy SB (2001) Antibacterial household products: cause for concern. Emerg Infect Dis 7:512–515

    Article  CAS  Google Scholar 

  • Levy CW, Roujeinikova A, Sedelnikova S, Baker PJ, Stuitje AR, Slabas AR, Rice DW, Rafferty JB (1999) Molecular basis of triclosan activity. Nature 398:383–384

    Article  CAS  Google Scholar 

  • Li X, Ying GG, Su HC, Yang XB, Wang L (2010) Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environ Int 36:557–562

    Article  CAS  Google Scholar 

  • Lin D, Zhou Q, Xie X, Liu Y (2010) Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms (Eisenia fetida). Chemosphere 81:1328–1333

    Article  CAS  Google Scholar 

  • Lindström A, Buerge IJ, Poiger T, Bergqvist PA, Müller MD, Buser HR (2002) Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol 36:2322–2329

    Article  CAS  Google Scholar 

  • Liu F, Ying GG, Yang LH, Zhou QX (2009) Terrestrial ecotoxicological effects of the antimicrobial triclosan. Ecotoxicol Environ Saf 72:86–92

    Article  CAS  Google Scholar 

  • Loos R, Wollgast J, Huber T, Hanke G (2007) Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy. Anal Bioanal Chem 387:1469–1478

    Article  CAS  Google Scholar 

  • Lores M, Llompart M, Sanchez-Prado L, Garcia-Jares C, Cela R (2005) Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME. Anal Bioanal Chem 381:1294–1298

    Article  CAS  Google Scholar 

  • Lozano N, Rice CP, Ramirez M, Torrents A (2010) Fate of triclosan in agricultural soils after biosolid applications. Chemosphere 78:760–766

    Article  CAS  Google Scholar 

  • Lyndall J, Fuchsman P, Bock M, Barber T, Lauren D, Leigh K, Perruchon E, Capdevielle M (2010) Probabilistic risk evaluation for triclosan in surface water, sediments, and aquatic biota tissues. Integr Environ Assess Manage 6:419–440

    Article  CAS  Google Scholar 

  • Maillard JY (2007) Bacterial resistance to biocides in the healthcare environment: shall we be concerned? J Hosp Infect 65:S60–S72

    Article  Google Scholar 

  • Matsumura N, Ishibashi H, Hirano M, Nagao Y, Watanabe N, Shiratsuchi H, Kai T, Nishimura T, Kashiwagi A, Arizono K (2005) Effects of nonylphenol and triclosan on production of plasma vitellogenin and testosterone in male South African clawed frogs (Xenopus laevis). Biol Pharm Bull 28:1748–1751

    Article  CAS  Google Scholar 

  • Mayer FL Jr, Ellersieck MR (1986) Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. Resour Publ 160, U.S. Dep. Interior, Fish Wildl. Serv., Washington, DC

  • McAvoy D, Schatowitz B, Jacob M, Hauk A, Eckhoff W (2002) Measurement of triclosan in wastewater treatment systems. Environ Toxicol Chem 21:1323–1329

    Article  CAS  Google Scholar 

  • McClellan K, Halden RU (2010) Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Res 44:658–668

    Article  CAS  Google Scholar 

  • McMahon T, Shamim N, Gowda S, Angle G, Leighton T (2008) 5-Chloro-2-(2,4-dichlorophenoxy) phenol (triclosan): risk assessment for the Registration Eligibility Decision (RED) Document. USEPA, Washington DC. http://www.epa.gov/oppsrrd1/REDs/2340red.pdf

  • Meade MJ, Waddell RL, Callahan TM (2001) Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol Lett 204:45–48

    Article  CAS  Google Scholar 

  • Menoutis J, Parisi I (2002) Testing for dioxin and furan contamination in triclosan. Cosmetics Toiletries 117:75–78

    CAS  Google Scholar 

  • Mezcua M, Gomez MJ, Ferrer I, Aguera A, Hernando MD, Fernandez-Alba AR (2004) Evidence of 2,7/2,8-dibenzodichloro-p-dioxin as a photodegradation product of triclosan in water and wastewatersamples. Anal Chim Acta 524:241–247

    Article  CAS  Google Scholar 

  • Miller TL, Lorusso DJ, Walsh ML, Deinzer ML (1983) The acute toxicity of penta-, hexa-, and heptachlorohydroxydiphenyl ethers in mice. J Toxicol Environ Health 12:245–253

    Article  CAS  Google Scholar 

  • Miller TR, Heidler J, Chillrud SN, Delaquil A, Ritchie JC, Mihalic JN, Bopp R, Halden RU (2008) Fate of triclosan and evidence of reductive dechlorination of triclocarban in estuarine sediments. Environ Sci Technol 42:4570–4576

    Article  CAS  Google Scholar 

  • Mink PJ, Adami HO, Trichopoulos D, Britton NL, Mandel JS (2008) Pesticides and prostate cancer: a review of epidemiologic studies with specific agricultural exposure information. Eur J Cancer Prev 17:97–110

    Article  Google Scholar 

  • Montes R, Rodriguez I, Rubi E, Cela R (2009) Dispersive liquid–liquid microextraction applied to the simultaneous derivatization and concentration of triclosan and methyltriclosan in water samples. J Chromatogr A 1216:205–210

    Article  CAS  Google Scholar 

  • Morales S, Canosa P, Rodriguez I, Rubi E, Cela R (2005) Microwave assisted extraction followed by gas chromatography with tandem mass spectrometry for the determination of triclosan and two related chlorophenols in sludge and sediments. J Chromatogr A 1082:128–135

    Article  CAS  Google Scholar 

  • Morrall N, McAvoy D, Schatowitz B, Inauen J, Jacob M, Hauk A, Eckhoff W (2004) A field study of triclosan loss rates in river water (Cibolo Creek, TX). Chemosphere 54:653–660

    Article  CAS  Google Scholar 

  • Mottaleb MA, Usenko S, O’Donnell JG, Ramirez AJ, Brooks BW, Chambliss CK (2009) Gas chromatography–mass spectrometry screening methods for select UV filters, synthetic musks, alkylphenols, an antimicrobial agent, and an insect repellent in fish. J Chromatogr A 1216:815–823

    Article  CAS  Google Scholar 

  • Nakada N, Tanishima T, Shinohara H, Kiri K, Takada H (2006) Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res 40:3297–3303

    Article  CAS  Google Scholar 

  • Nassef M, Kim SG, Seki M, Kang IJ, Hano T, Shimasaki Y, Oshima Y (2010a) In ovo nanoinjection of triclosan, diclofenac and carbamazepine affects embryonic development of medaka fish (Oryzias latipes). Chemosphere 79:966–973

    Article  CAS  Google Scholar 

  • Nassef M, Matsumoto S, Seki M, Khalil F, Kang IJ, Shimasaki Y, Oshima Y, Honjo T (2010b) Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese medaka fish (Oryzias latipes). Chemosphere 80:1095–1100

    Article  CAS  Google Scholar 

  • Neumegen RA, Fernandez-Alba AR, Chisti Y (2005) Toxicities of triclosan, phenol, and copper sulfate in activated sludge. Environ Toxicol 20:160–164

    Article  CAS  Google Scholar 

  • Nieto A, Borrull F, Marce RM, Pocurull E (2009) Determination of personal care products in sewage sludge by pressurized liquid extraction and ultra high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1216:5619–5625

    Article  CAS  Google Scholar 

  • Nishi I, Kawakami T, Onodera S (2008) Monitoring of triclosan in the surface water of the Tone Canal, Japan. Bull Environ Contam Toxicol 80:163–166

    Article  CAS  Google Scholar 

  • Oliveira R, Domingues I, Koppe Grisolia C, Soares AMVM (2009) Effects of triclosan on zebrafish early-life stages and adults. Environ Sci Pollut Res 16:679–688

    Article  CAS  Google Scholar 

  • Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002) Aquatic toxicity of triclosan. Environ Toxicol Chem 21:1338–1349

    Article  CAS  Google Scholar 

  • Palenske NM, Nallani GC, Dzialowski EM (2010) Physiological effects and bioconcentration of triclosan on amphibian larvae. Comp Biochem Physiol Part C 152:232–240

    Google Scholar 

  • Parikh SL, Xiao G, Tong PJ (2000) Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry 39:7645–7650

    Article  CAS  Google Scholar 

  • Pedrouzo M, Borrull F, Marcé RM, Pocurull E (2010) Stir-bar-sorptive extraction and ultra-high-performance liquid chromatography–tandem mass spectrometry for simultaneous analysis of UV filters and antimicrobial agents in water samples. Anal Bioanal Chem 397:2833–2839

    Article  CAS  Google Scholar 

  • Peng X, Yu Y, Tang C, Tan J, Huang Q, Wang Z (2008) Occurrence of steroid estrogens, endocrine-disrupting phenols and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci Total Environ 397:158–166

    Article  CAS  Google Scholar 

  • Pera-Titus M, Garcia-Molina V, Baños MA, Giménez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B: Environ 47:219–256

    Article  CAS  Google Scholar 

  • Pothitou P, Voutsa D (2008) Endocrine disrupting compounds in municipal and industrial wastewater treatment plants in Northern Greece. Chemosphere 73:1716–1723

    Article  CAS  Google Scholar 

  • Price OR, Williams RJ, van Egmond R, Wilkinson MJ, Whelan MJ (2010) Predicting accurate and ecologically relevant regional scale concentrations of triclosan in rivers for use in higher-tier aquatic risk assessments. Envir Int 36:521–526

    Article  CAS  Google Scholar 

  • Prins GS (2008) Endocrine disruptors and prostate cancer risk. Endocr Relat Canc 15:649–656

    Article  CAS  Google Scholar 

  • Ramaswamy BR, Shanmugam G, Velu G, Rengarajan B, Larsson DGJ (2011) GC–MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. J Hazard Mater 186:1586–1593

    Article  CAS  Google Scholar 

  • Ramirez AJ, Brain RA, Usenko S, Mottaleb MA, O’Donnell JG, Stahl LL, Wathen JB, Snyder BD, Pitt JL, Perez-Hurtado P, Dobbins LL, Brooks BW, Chambliss CK (2009) Occurrence of pharmaceuticals and personal care products (PPCPs) in fish: results of a national pilot study in the U.S. Environ Toxicol Chem 25:1–10

    Google Scholar 

  • Regueiro J, Becerril E, Garcia-Jares C, Llompart M (2009) Trace analysis of parabens, triclosan and related chlorophenols in water by headspace solid-phase microextraction with in situ derivatization and gas chromatography–tandem mass spectrometry. J Chromatogr A 1216:693–702

    Google Scholar 

  • Reiss R, Mackay N, Habig C, Griffin J (2002) An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ Toxicol Chem 21:2483–2492

    Article  CAS  Google Scholar 

  • Reiss R, Lewis G, Griffin J (2009) An ecological risk assessment for triclosan in the terrestrial environment. Environ Toxicol Chem 28:1546–1556

    Article  CAS  Google Scholar 

  • Ricart M, Guasch H, Alberch M, Barceló D, Bonnineau C, Geiszinger A, Farré M, Ferrer J, Ricciardi F, Romaní AM, Morin S, Proia L, Sala L, Sureda D, Sabater S (2010) Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquat Toxicol 100:346–353

    Article  CAS  Google Scholar 

  • Rodricks JV, Swenberg JA, Borzelleca JF, Maronpot RR, Shipp AM (2010) Triclosan: a critical review of the experimental data and development of margins of safety for consumer products. Crit Rev Toxicol 40:422–484

    Article  CAS  Google Scholar 

  • Roh H, Subramanya N, Zhao F, Yu CP, Sandt J, Chu KH (2009) Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere 77:1084–1089

    Article  CAS  Google Scholar 

  • Rule KL, Ebbett VR, Vikesland PJ (2005) Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan. Environ Sci Technol 39:3176–3185

    Article  CAS  Google Scholar 

  • Sabaliunas D, Webb SF, Hauk A, Jacob M, Eckhoff WS (2003) Environmental fate of triclosan in the River Aire Basin, UK. Water Res 37:3145–3154

    Article  CAS  Google Scholar 

  • Sanches-Silva A, Cruz-Freire JM, Paseiro-Losada P (2010) Study of the diffusion coefficients of diphenylbutadiene and triclosan into and within meat. Eur Food Res Technol 230:957–964

    Article  CAS  Google Scholar 

  • Sanchez-Prado L, Llompart M, Lores M, Garcia-Jares C, Bayona JM, Cela R (2006) Monitoring the photochemical degradation product of triclosan in wastewater by UV light and sunlight usinf solid-phase microextraction. Chemosphere 65:1338–1347

    Article  CAS  Google Scholar 

  • Sanchez-Prado L, Barro R, Garcia-Jarès C, Llompart M, Lores M, Petrakis C, Kalogerakis N, Mantzavinos D, Psillakis E (2008) Sonochemical degradation of triclosan in water and wastewater. Ultrason Sonochem 15:689–694

    Article  CAS  Google Scholar 

  • Sandborgh-Englund G, Adolfsson-Erici M, Odham G, Ekstrand J (2006) Pharmacokinetics of triclosan following oral ingestion in humans. J Toxicol Environ Health A 69:1861–1873

    Article  CAS  Google Scholar 

  • SCCS (2010) Scientific Committee on Consumer Safety. Opinion on: Triclosan antimicrobial, resistance (SCCP/1251/09). Adopted by the SCCP during the 7th plenary on 22 June 2010

  • Seaman PF, Ochs D, Day MJ (2007) Comment on: triclosan resistance in methicillin-resistant Staphylococcus aureus expressed as small colony variants: a novel mode of evasion of susceptibility to antibiotics. J Antimicrob Chemother 60:175–176

    Article  CAS  Google Scholar 

  • Singer H, Müller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36:4998–5004

    Article  CAS  Google Scholar 

  • Singh SP, Azua A, Chaudhary A, Khan S, Willett KL, Gardinali PR (2010) Occurrence and distribution of steroids, hormones and selected pharmaceuticals in South Florida coastal environments. Ecotoxicology 19:338–350

    Article  CAS  Google Scholar 

  • Son HS, Choi SB, Zoh KD, Khan E (2007) Effects of ultraviolet intensity and wavelength on the photolysis of triclosan. Water Sci Technol 55:209–216

    CAS  Google Scholar 

  • Stasinakis AS, Petalas AV, Mamais D, Thomaidis NS, Gatidou G, Lekkas TD (2007) Investigation of triclosan fate and toxicity in continuous-flow activated sludge systems. Chemosphere 68:375–381

    Article  CAS  Google Scholar 

  • Stasinakis AS, Mamais D, Thomaidis NS, Danika E, Gatidou G, Lekkas TD (2008) Inhibitory effect of triclosan and nonylphenol on respiration rates and ammonia removal in activated sludge systems. Ecotoxicol and Environ Saf 70:199–206

    Article  CAS  Google Scholar 

  • Stasinakis AS, Kordoutis CI, Tsiouma VC, Gatidou G, Thomaidis NS (2010) Removal of selected endocrine disrupters in activated sludge systems: effect of sludge retention time on their sorption and biodegradation. Bioresource Technol 101:2090–2095

    Article  CAS  Google Scholar 

  • Stevens KJ, Kim SY, Adhikari S, Vadapalli V, Venables BJ (2009) Effect of triclosan on seed germination and seedling development of three wetland plants. Environ Toxicol Chem 28:2598–2609

    Article  CAS  Google Scholar 

  • Suarez S, Dodd MC, Omil F, von Gunten U (2007) Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation. Water Res 41:2481–2490

    Article  CAS  Google Scholar 

  • Svenningsen H, Henriksen T, Prieme A, Johnsen AR (2011) Triclosan affects the microbial community in simulated sewage-drain-field soil and slows down xenobiotic degradation. Environ Pollut 159:1599–1605

    Article  CAS  Google Scholar 

  • Tatarazako N, Ishibashi H, Teshima K, Kishi K, Arizono K (2004) Effects of triclosan on various aquatic organisms. Environ Sci 11:133–140

    CAS  Google Scholar 

  • Tkachenko O, Shepard J, Aris VM et al (2007) A triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes. Res Microbial 158:651–658

    Article  CAS  Google Scholar 

  • Topp E, Monteiro SC, Beck A, Coelho BB, Boxall AB, Duenk PW (2008) Runoff of pharmaceuticals and personal care products following application of biosolids to an agricultural field. Sci Tot Environ 396:52–59

    Article  CAS  Google Scholar 

  • Trenholm RA, Vanderford BJ, Drewes JE, Snyder SA (2008) Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry. J Chromatogr A 1190:253–262

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency) (2007) An analysis of laboratory and observational field data characterizing cumulative exposure to pesticides, EPA 600/R-07/013. Environmental Protection Agency, U.S. Research Triangle Park, NC, 27711, USA

    Google Scholar 

  • USEPA (United States Environmental Protection Agency) (2009) Targeted national sewage sludge survey and analysis technical report, EPA-822-R-08-016. U.S. Washington, USA: Environmental Protection Agency

  • USFDA (United States Food Drug Administration) (2008) Supporting information for toxicological evaluation by the national toxicology program http://ntp.niehs.nih.gov/ntp/htdocs/Chem_Background/ExSumPdf/triclosan_508.pdf

  • Valters K, Li H, Alaee M, D’Sa I, Marsh G, Bergman A, Letcher RJ (2005) Polybrominated diphenyl ethers and hydroxylated and methoxylated brominated and chlorinated analogues in the plasma of fish from the Detroit River. Environ Sci Technol 39:5612–5619

    Article  CAS  Google Scholar 

  • Veldhoen N, Skirrow RC, Osachoff H, Wigmore H, Clapson DJ, Gunderson MP, Van Aggelen G, Helbing CC (2006) The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquatic Toxicol 80:217–227

    Article  CAS  Google Scholar 

  • Villaverde-de-Sáa E, González-Mariňo I, Quintana JB, Rodil R, Rodriguez I, Cela R (2010) In-sample acetylation-non-porous membrane-assisted liquid-liquid extraction for the determination of parabens and triclosan in water samples. Anal Bioanal Chem 397:2559–2568

    Article  CAS  Google Scholar 

  • Waller NJ, Kookana RS (2009) Effect of triclosan on microbial activity in Australian soils. Environ Toxicol Chem 28:65–70

    Article  CAS  Google Scholar 

  • Wang LQ, Falany CN, James MO (2004) Triclosan as a substrate and inhibitor of 3′-phosphoadenosine 5′-phosphosulfate-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab Dispos 32:1162–1169

    Article  CAS  Google Scholar 

  • Weigel S, Berger U, Jensen E, Kallenborn R, Thoresen H, Hühnerfuss H (2004) Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromsø/Norway with emphasis on ibuprofen and its metabolites. Chemosphere 56:583–592

    Article  CAS  Google Scholar 

  • Wert EC, Rosario-Ortiz FL, Snyder SA (2009) Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater. Water Res 43:1005–1014

    Article  CAS  Google Scholar 

  • Wilson BA (2003) Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environ Sci Technol 37:1713–1719

    Article  CAS  Google Scholar 

  • Wilson BA, Zhu J, Cantwell MG, Olsen CR (2008) Short-term dynamics and retention of triclosan in the lower Hudson River estuary. Mar Pollut Bull 56:1215–1233

    Article  CAS  Google Scholar 

  • Wilson B, Chen RF, Cantwell M, Gontz A, Zhu J, Olsen CR (2009) The partitioning of triclosan between aqueous and particulate bound phases in the Hudson River estuary. Mar Pollut Bull 59:207–212

    Article  CAS  Google Scholar 

  • Wind T, Werner U, Jacob M, Hauk A (2004) Environmental concentrations of boron, LAS, EDTA, NTA and triclosan simulated with GREAT-ER in the river Itter. Chemosphere 54:1135–1144

    Article  CAS  Google Scholar 

  • Wolff MS, Teitelbaum SL, Windham G, Pinney SM, Britton JA, Chelimo C, Godbold J, Biro F, Kushi LH, Pfeiffer CM, Calafat AM (2007) Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ Health Perspect 115:116–121

    Article  CAS  Google Scholar 

  • Wu JL, Lam NP, Martens D, Kettrup A, Cai Z (2007) Triclosan determination in water related to wastewater treatment. Talanta 72:1650–1654

    Article  CAS  Google Scholar 

  • Wu C, Spongberg AL, Witter JD (2009) Adsorption and degradation of triclosan and triclocarban in soils and biosolids-amended soils. J Agric Food Chem 57:4900–4905

    Article  CAS  Google Scholar 

  • Xie Z, Ebinghaus R, Flöser G, Caba A, Ruck W (2008) Occurrence and distribution of triclosan in the German Bight (North sea). Environ Pollut 156:1190–1195

    Article  CAS  Google Scholar 

  • Xu J, Wu L, Chang AC (2009) Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere 77:1299–1305

    Article  CAS  Google Scholar 

  • Ye X, Bishop AM, Needham LL, Calafat AM (2008) Automated on-line column-switching HPLC-MS/MS method with peak focusing for measuring parabens, triclosan, and other environmental phenols in human milk. Anal Chim Acta 622:150–156

    Article  CAS  Google Scholar 

  • Ying GG, Kookana RS (2007) Triclosan in wastewaters and biosolids from Australian, wastewater treatment plants. Environ Int 33:199–205

    Article  CAS  Google Scholar 

  • Ying GG, Yu XY, Kookana RS (2007) Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ Pollut 150:300–305

    Article  CAS  Google Scholar 

  • Yu CP, Chu KH (2009) Occurrence of pharmaceuticals and personal care products along the West Prong Little Pigeon River in east Tennessee, USA. Chemosphere 75:1281–1286

    Article  CAS  Google Scholar 

  • Yu JC, Kwong TY, Luo Q, Cai Z (2006) Photocatalytic oxidation of triclosan. Chemosphere 65:390–399

    Article  CAS  Google Scholar 

  • Yu Y, Huang Q, Wang Z, Zhang K, Tang C, Cui J, Feng J, Peng X (2011) Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China. J Environ Monit 13:871–878

    Article  CAS  Google Scholar 

  • Zhang S, Zhang Q, Darisaw S, Ehie O, Wang G (2007) Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA. Chemosphere 66:1057–1069

    Article  CAS  Google Scholar 

  • Zhao JL, Ying GG, Liu YS, Chen F, Yang JF, Wang L (2010) Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: from source to the receiving environment. J Hazard Mater 179:215–222

    Article  CAS  Google Scholar 

  • Zuckerbraun HL, Babich H, May R, Sinensky MC (1998) Cytotoxicity, mode of action, and induction of apoptosis in human gingival cells in vitro. Eur J Oral Sci 106:628–636

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Bedoux.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedoux, G., Roig, B., Thomas, O. et al. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res 19, 1044–1065 (2012). https://doi.org/10.1007/s11356-011-0632-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0632-z

Keywords

Navigation