Skip to main content
Log in

Identification of Heterogeneous Elastoplastic Behaviors Using the Constitutive Equation Gap Method

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Recent developments in imaging techniques now facilitate local field measurements (e.g. strain, temperature, etc.). In this study, we identify the spatial distribution of material properties and local stress fields using an inverse identification method based on the constitutive equation gap (CEG). The CEG concept is based both on minimization of a cost function equal to the sum of the potential and complementary energies, and on the deviation between the measured and computed strain fields. We propose a new approach for identifying heterogeneous property fields (mechanical parameters and stress) using a secant elastoplastic tensor and a measured strain field obtained by full-field measurement. The reliability of the method is checked using finite element simulation data as reference full-field measurements. The method is then applied on noisy displacement fields to assess its robustness. Finally, the developed inverse method is tested on real measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Wattrisse B, Chrysochoos A, Muracciole J-M, Nemoz-Gaillard M (2001) Analysis of strain localization during tensile tests by digital image correlation. Exp Mech 41:29–39

    Article  MATH  Google Scholar 

  2. Grédiac M (2004) The use of full-field measurement methods in composite material characterization: interest and limitations. Composites Part A: Appl Sci Manufac 35:751–761

    Article  Google Scholar 

  3. Chalal H, Avril S, Pierron F, Meraghni F (2006) Experimental identification of a nonlinear model for composites using the grid technique coupled to the virtual fields method. Composites Part A: Appl Sci Manufac 37(2):315–325

    Article  Google Scholar 

  4. Avril S, Pierron F (2007) General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int J Solids Struct 44(14–15):4978–5002

    Article  MATH  Google Scholar 

  5. Rossi M, Pierron F (2012) On the use of simulated experiments in designing tests for material characterization from full-field measurements. Int J Solids Struct 49(3–4):420–435

    Article  Google Scholar 

  6. Avril S, Bonnet M, Bretelle A-S, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Experiment Mech 48(4):381–402

    Article  Google Scholar 

  7. Kavanagh KT, Clough RW (1971) Finite element applications in the characterization of elastic solids. Int J Solids Struct 7:11–23

    Article  MATH  Google Scholar 

  8. Meuwissen MHH, Oomens CWJ, Baaijens FPT, Petterson R, Janssen JD (1998) Determination of the elasto-plastic properties of aluminum using a mixed numerical-experimental method. J Mater Process Technol 75(1-3):204211

    Article  Google Scholar 

  9. Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne D (2008) Identification of mechanical material behavior through inverse modeling and DIC. Exp Mech 48(4):421–433

    Article  MATH  Google Scholar 

  10. Passieux J-C, Bugarin F., David C., Périé J-N and Robert L., Multiscale displacement field measurementusing digital image correlation: application to the identification of elastic properties. Experiment Mech, volume: 55, Issue: 1, Pages: 121-137, 2015

  11. Mathieu F., Leclerc H., Hild F. and Roux S., Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Experiment Mech, volume: 55, Issue: 1, Pages: 105-119, 2015

  12. Guery A, Hild F, Latourte F, Roux S (2016) Identification of crystal plasticity parameters using DIC measurements and weighted FEMU. Mech Mater 100:55–71

    Article  Google Scholar 

  13. Siddiqui M, Khan SZ, Khan MA, ShahzadK M, Khan KA, Nisar S, Noman D (2017) A projected finite element update method for inverse identification of material constitutive parameters in transversely isotropic laminates. Experiment Mech 57(5):755–772

    Article  Google Scholar 

  14. Bui HD, Constantinescu A, Maigre H (2004) Numerical identification of linear cracks in 2D elastodynamics using the instantaneous reciprocity gap. Inverse Problems 20:993–1001

    Article  MathSciNet  MATH  Google Scholar 

  15. Sun Y, Guo Y, Ma F (2016) The reciprocity gap functional method for the inverse scattering problem for cavities. Appl Anal 95(6):1327–1346

    Article  MathSciNet  MATH  Google Scholar 

  16. Feissel P, Allix O (2007) Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case. Comput Eng Appl Mech Eng 196:1968–1983

    Article  MATH  Google Scholar 

  17. Florentin E, Lubineau G (2011) Using constitutive equation gap method for identification of elastic material parameters: technical insights and illustrations. Int J Interact Design Manufac (IJIDeM) 5(4):227–234

    Article  Google Scholar 

  18. Merzouki T, Nouri H, Roger F (2014) Direct identification of nonlinear damage behavior of composite materials using the constitutive equation gap method. Int J Mech Sci 89:487–499

    Article  Google Scholar 

  19. Grédiac M, Toussaint E, Pierron F (2002) Special virtual fields for the direct determination of material parameters with the virtual fields method.1 - Principle and definition. Int J Solids Struct 39:2691–2705

    Article  MATH  Google Scholar 

  20. Grédiac M, Pierron F (2006) Applying the virtual field method to the identification of elasto-plastic constitutive parameters. Int J Plast 22:602–627

    Article  MATH  Google Scholar 

  21. Kim J-H, Pierron F, Wisnom MR, Syed-Muhamad K (2007) Identification of the local stiffness reduction of a damaged composite plate using the virtual fields method. Composites Part A: Appl Sci Manufac 38(9):2065–2075

    Article  Google Scholar 

  22. Avril S, Huntley JM, Pierron F, Steele DD (2008) 3D heterogeneous stiffness reconstruction using MRI and the virtual fields method. Exp Mech 48(4):479–494

    Article  Google Scholar 

  23. Pierron F, Avril S, The TV (2010) Extension of the virtual fields method to elastoplastic material identification with cyclic loads and kinematic hardening. Int J Solids Struct 47(22–23):2993–3010

    Article  MATH  Google Scholar 

  24. Grama SN, Subramanian SJ, Pierron F (2015) On the identifiability of Anand visco-plastic model parameters using the virtual fields method. Acta Mater 86:118–136

    Article  Google Scholar 

  25. Rossi M, Pierron F, Štamborská M (2016) Application of the virtual fields method to large strain anisotropic plasticity. Int J Solids Struct 97–98:322–335

    Article  Google Scholar 

  26. Wang P, Pierron F, Rossi M, Lava P, Thomsen OT (2016) Optimised experimental characterisation of polymeric foam material using DIC and the virtual fields method. Strain 52(1):59–79

    Article  Google Scholar 

  27. Marek A, Davis FM, Pierron F (2017) Sensitivity-based virtual fields for computational mechanics. Comput Mech 60(3):409–431

    Article  MathSciNet  MATH  Google Scholar 

  28. Roux S, Hild F, Pagano S (2005) A stress scale in full-field identification procedures: a diffuse stress gauge. Eur J Mech - A/Solids 24:442451

    Article  MATH  Google Scholar 

  29. Ben AM, Périé J-N, Guimard J-M, Hild F, Roux S (2011) On the identification and validation of an anisotropic damage model using full-field measurements. Int J Damage Mech 20(8):1130–1150

    Article  Google Scholar 

  30. Ladevèze P (1983) And and Leguillon D., Error estimate procedure in the finite element method and applications. SIAM. J Num Anal 20:485–509

    Article  MATH  Google Scholar 

  31. Constantinescu A (1995) On the identification of elastic modulus from displacement force boundary measurements. Inverse Problems Eng 1:293–315

    Article  Google Scholar 

  32. Geymonat G, Pagano S (2003) Identification of mechanical properties by displacement field measurement: a variational approach. Meccanica 38:535–545

    Article  MathSciNet  MATH  Google Scholar 

  33. Latourte F, Chrysochoos A, Pagano S, Wattrisse B (2008) Elastoplastic behavior identification for heterogeneous loadings and materials. Exp Mech 48:435–449

    Article  Google Scholar 

  34. Simo J, Hughes T (1998) Computational inelasticity. Springer, Verlag

    MATH  Google Scholar 

  35. Bornert M, Brémand F, Doumalin P, Dupré M, Fazzini J-C, Grédiac M, Hild F, Mistou S, Molimard J, Orteu J-J, Robert L, Surrel Y, Vacher P, Wattrisse B (2008) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49:353–370

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Madani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madani, T., Monerie, Y., Pagano, S. et al. Identification of Heterogeneous Elastoplastic Behaviors Using the Constitutive Equation Gap Method. Exp Mech 58, 919–939 (2018). https://doi.org/10.1007/s11340-018-0389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-018-0389-0

Keywords

Navigation