Skip to main content
Log in

A Digital Image Correlation Method For Tracking Planar Motions Of Rigid Spheres: Application To Medium Velocity Impacts

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper deals with the measurement of spherical impactor positions, velocities and acceleration (translations and rotations) during medium velocity impact experiments performed with gas-gun devices. A dedicated 2D Digital Image Correlation (DIC) technique based on customized interpolation functions is presented. The proposed method considers the rotations of the projectile which a standard subset-based DIC technique would undoubtedly have difficulty managing. Emphasis is placed on metrological performance and various validations are proposed. Measurements are additionally compared to those retrieved with conventional techniques. This DIC method provides a precise quantification of projectile motion and impact loads during gas-gun tests with a single high speed camera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abdulhamid H, Kolopp A, Bouvet C, Rivallant S (2013) Experimental and numerical study of AA5086-H111 aluminum plates subjected to impact. Int J of Impact Eng 51:1–12

    Article  Google Scholar 

  2. Abrate S (1998) Impact on composite structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Akhavan F, Watkins SE, Chandrashekhara K (2000) Prediction of impact contact forces of composite plates using fiber optic sensors and neural networks. Mech Compos Mater Struct 7(2):195–205

    Article  Google Scholar 

  4. Barker LM, Hollenbach RE (1972) Laser interferometer for measuring high velocities of any reflecting surface. J Appl Phys 43:4669–4675

    Article  Google Scholar 

  5. Besnard G, Hild F, Roux S (2006) Finite-element displacement fields analysis from digital images: Application to portevinle châtelier bands. Exp Math 46(6):789–803

    Google Scholar 

  6. Bornert M, Brémand F, Doumalin P, Dupré JC, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu J J, Robert L, Surrel Y, Vacher P, Wattrisse B (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49(3):353–370

    Article  Google Scholar 

  7. Castanié B, Bouvet C, Aminanda Y, Barrau JJ, Thevenet P (2008) Modelling of low energy/low velocity impact on nomex honeycomb sandwich structures with metallic skins. Int J of Impact Eng 35:620–634

    Article  Google Scholar 

  8. Chambon S, Crouzil A (2003) Dense matching using correlation : New measures that are robust near occlusions In: Proceedings of British Machine Vision Conference (BMVC2003), vol 42, pp 143–152

  9. Chang C, Sun C (1989) Determining transverse impact force on a composite laminate by signal deconvolution. Exp Mech 29(4):414–419

    Article  MathSciNet  Google Scholar 

  10. Cheng P, Sutton M, Schreier H, McNeill SR (2002) Full-field speckle pattern image correlation with b-spline deformation function. Exp Mech 42(3):344–352

    Article  Google Scholar 

  11. Doyle J (1987) Determining the contact force during the transverse impact of plates. Exp Mech 27(1):68–72

    Article  MathSciNet  Google Scholar 

  12. Fedele R, Galantucci L, Ciani A (2013) Global 2d digital image correlation for motion estimation in a finite element framework: a variational formulation and a regularized, pyramidal, multi-grid implementation. Int J Numer Methods Eng 96(12):739–762

    Article  Google Scholar 

  13. Fehrenbach J, Masmoudi M (2008) A fast algorithm for image registration. C R Mathématique 346(9-10):593–598

    Article  MATH  MathSciNet  Google Scholar 

  14. Fleming DC (1999) Delamination modeling of composites for improved crash analysis

  15. Fuh C, Maragos P (1991) Motion displacement estimation using an affine model for matching. Opt Eng 30(7)

  16. Guinard S, Allix O, Guedra-Degeorges D, Vinet A (2002) A 3d damage analysis of low-velocity impacts on laminated composites. Compos Sci & Technol 62(02):585–589

    Article  Google Scholar 

  17. Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519

    Article  Google Scholar 

  18. Horn B, Schunck G (1981) Determining optical flow. Artif Intell 17:185–203

    Article  Google Scholar 

  19. Hough P (1959) Machine analysis of bubble chamber pictures In: Artificial Intelligence High Energy Accelerators and Instrumentation

  20. Hu N, Fukunaga H, Matsumoto S, Yan B, Peng X (2007) An efficient approach for identifying impact force using embedded piezoelectric sensors. Int J Impact Eng 34(7):1258–1271

    Article  Google Scholar 

  21. Inoue H, Harrigan JJ, Reid SR (2001) Review of inverse analysis for indirect measurement of impact force. Appl Mech Eng 54(6):503–524

    Google Scholar 

  22. Johnson A, Pickett A, Rozycki P (2001) Computational methods for predicting impact damage in composite structures. Compos Sci Technol 61(15):2183–2192. doi:10.1016/S0266-3538(01)00111-7

    Article  Google Scholar 

  23. Lalanne M, Berthier P, Hagopian JD (1983) Mechanical Vibrations for Engineers. John Wiley & Sons, New York

    MATH  Google Scholar 

  24. Leclerc H, Périé JN, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties. Lectures Notes in Comput Sci 5496:161–171

    Article  Google Scholar 

  25. Lin HY, Gu KD, Chang CH (2012) Photo-consistent synthesis of motion blur and depth-of-field effects with a real camera model. Image Vis Comput 30(9):605–618

    Article  Google Scholar 

  26. Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereo vision In: Proceedings of Imaging Understanding Workshop, pp 121–130

  27. Navarro P, Aubry J, Marguet S, Ferrero JF, Lemaire S, Rauch P (2012) Semi-continuous approach for the modelling of thin woven composite panels applied to oblique impacts on helicopter blades. Compos A: Appl Sci Manuf 43(6):871–879

    Article  Google Scholar 

  28. Orteu JJ, Garcia D, Robert L, Bugarin F (2006) A speckle-texture image generator. In: Speckle’06 International Conference. vol. 6341, p. doi:10.1117/12.695280

  29. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062,001

    Article  Google Scholar 

  30. Pan B, Xie H, Wang Z (2010) Equivalence of digital image correlation criteria for pattern matching. Appl Opt 49(28):5501–5509

    Article  Google Scholar 

  31. Pan B, Yu L, Wu D (2013) High-accuracy 2d digital image correlation measurements with bilateral telecentric lenses: Error analysis and experimental verification. Exp Mech 53(9):1719–1733

    Article  Google Scholar 

  32. Passieux JC, Bugarin F, David C, Périé JN, Robert L (2014) Multiscale displacement field measurement using digital image correlation: Application to the identification of elastic properties. Exp Mech p. doi:10.1007/s11340-014-9872-4

  33. Passieux JC, Périé JN (2012) High resolution digital image correlation using proper generalized decomposition: PGD-DIC. Int J Numer Methods Eng 92(6):531–550

    Article  Google Scholar 

  34. Gomes Perini LA, Passieux JC, Périé JN (2014) A multigrid pgd-based algorithm for volumetric displacement fields measurements. Strain 50(4):355–367

    Article  Google Scholar 

  35. Réthoré J, Morestin F, Lafarge L, Valverde P (2014) 3D displacement measurements using a single camera. Opt Lasers Eng 57(0):20–27

    Article  Google Scholar 

  36. Réthoré J, Muhibullah, Elguedj T, Coret M, Chaudet P, Combescure A (2013) Robust identification of elasto-plastic constitutive law parameters from digital image using 3d kinematics. Int. J. Solids Struct 50:73–85

    Article  Google Scholar 

  37. Reu P, Miller T (2008) The application of high-speed digital image correlation. J of Strain Anal for Eng Des 43(8):673–688

    Article  Google Scholar 

  38. Roscher KU, Fischer WJ, Heinig A, Pfeifer G, Starke E (2009) Start-up behavior of event-driven sensor networks for impact load monitoring. Sensors Actuators A Phys 156(1):109–114

    Article  Google Scholar 

  39. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J. Fract 140:141–157

    Article  MATH  Google Scholar 

  40. Roux S, Hild F, Berthaud Y (2002) Correlation image velocimetry : A spectral approach. Appl Opt 41:108–115

    Article  Google Scholar 

  41. Schreier H, Braasch J, Sutton M (2000) Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng 39(11):2915–2921

    Article  Google Scholar 

  42. Sun Y, Pang J, Wong CK, Su F (2005) Finite element formulation for a digital image correlation method. Appl Opt 44(34):7357–7363

    Article  Google Scholar 

  43. Sutton M, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: Basic Concepts, Theory and Applications. Springer, New York

    Google Scholar 

  44. Sutton M, Wolters W, Peters W, Ranson W, McNeill S (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139

    Article  Google Scholar 

  45. Takeda S, Minakuchi S, Okabe Y, Takeda N (2005) Delamination monitoring of laminated composites subjected to low-velocity impact using small-diameter fbg sensors. Compos A: Appl Sci Manuf 36(7):903–908

    Article  Google Scholar 

  46. Talreja R (2008) Damage and fatigue in composites a personal account. Compos Sci Technol 68(13):2585–2591. doi:10.1016/j.compscitech.2008.04.042

    Article  Google Scholar 

  47. Vogler T, Trott W, Reinhart W, Alexander C, Furnish M, Knudson M, Chhabildas L (2008) Using the line-VISAR to study multi-dimensional and mesoscale impact phenomena. Int J of Impact Eng 35(12):1844–1852

    Article  Google Scholar 

  48. Wu E, Tsai T, Yen C (1995) Two methods for determining impact-force history on elastic plates. Exp Mech 35(1):11–18

    Article  Google Scholar 

  49. Xu G, Zhang Z (1996) Epipolar geometry in Stereo, Motion and Object Recognition. Kluwer, Norwell

    Book  MATH  Google Scholar 

  50. Yilmaz A, Javed O, Shah M (2006) Object tracking: A survey, vol 38

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Passieux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 16.3 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passieux, JC., Navarro, P., Périé, JN. et al. A Digital Image Correlation Method For Tracking Planar Motions Of Rigid Spheres: Application To Medium Velocity Impacts. Exp Mech 54, 1453–1466 (2014). https://doi.org/10.1007/s11340-014-9930-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9930-y

Keywords

Navigation