Skip to main content
Log in

Digital Image Correlation for Improved Detection of Basal Cell Carcinoma

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Border detection is a critical aspect during removal of a basal cell carcinoma tumor. Since the tumor is only 3% to 50% as stiff as the healthy skin surrounding it, strain concentrates in the tumor during deformation. Here we develop a digital image correlation (DIC) technique for improved lateral border detection based upon the strain concentrations associated with the stiffness difference of healthy and cancerous skin. Gelatin skin phantoms and pigskin specimens are prepared with compliant inclusions of varying shapes, sizes, and stiffnesses. The specimens with inclusions as well as several control specimens are loaded under tension, and the full-field strain and displacement fields measured by DIC. Significant strain concentrations develop around the compliant inclusions in gelatin skin phantoms, enabling detection of the tumor border to within 2% of the actual border. At a lower magnification, the lateral border between a pigskin/inclusion interface is determined within 23% of the border. Strain concentrations are identified by DIC measurements and associated with the lateral edges of the compliant inclusions. The experimental DIC protocol developed for model specimens has potential as a tool to aid in more accurate detection of basal cell carcinoma borders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al (2007) Cancer Statistics, 2007. CA Cancer J Clin 57(1):43–46

    Article  Google Scholar 

  2. Lin SJ, Lee SH (2006) Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt Lett 31:489–498

    Article  Google Scholar 

  3. Ceilley RI, Del Rosso JQ (2006) Current modalities and new advances in the treatment of basal cell carcinoma. Int J Dermatol 45(5):489–498

    Article  Google Scholar 

  4. Crowson AN (2006) Basal cell carcinoma: biology, morphology, and clinical implications. Mod Pathol 19:S127–S147

    Article  Google Scholar 

  5. Heckmann M, Zogelmeier F, Konz B (2002) Frequency of facial basal cell carcinoma does not correlate with site-specific UV exposure. Arch Dermatol 138(11):1494–1497

    Article  Google Scholar 

  6. Patel YG, Nehal KS, Aranda I, Li Y, Halpern AC, Rajadhyaksha M (2007) Confocal reflectance mosaicing of basal cell carcinomas in Mohs surgical skin excisions. J Biomed Opt 12(3):034027–10

    Article  Google Scholar 

  7. Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL (2006) Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. J Am Acad Dermatol 55(3):408–412

    Article  Google Scholar 

  8. Rajadhyaksha M, Menaker GM, Gonzalez S, Zavislan JM, Dwyer PJ (2001) Confocal cross-polarized imaging of skin cancers to potentially guide Mohs micrographic surgery. Optics Photonics News 12(12):30

    Article  Google Scholar 

  9. Agache PG, Monneur C, Leveque JL, Rigal J (1980) Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol 269(3):221–232

    Article  Google Scholar 

  10. Daly CH, Odland GF (1979) Age-related changes in the mechanical properties of human skin. J Invest Dermatol 73(1):84–87

    Article  Google Scholar 

  11. Diridollou S, Patat F, Gens F, Vaillant L, Black D, Lagarde JM et al (2000) In vivo model of the mechanical properties of the human skin under suction. Skin Res Technol 6(4):214

    Article  Google Scholar 

  12. Escoffier C, de Rigal J, Rochefort A, Vasselet R, Leveque J-L, Agache PG (1989) Age-related mechanical properties of human skin: an in vivo study. J Invest Dermatol 93(3):353–357

    Article  Google Scholar 

  13. Manschot JFM, Brakkee AJM (1986) The measurement and modelling of the mechanical properties of human skin in vivo. II. The model. J Biomech 19(7):517–521

    Article  Google Scholar 

  14. Tilleman TR, Tilleman MM, Neumann MHA (2004) The elastic properties of cancerous skin: Poisson’s ratio and Young’s modulus. Isr Med Assoc J 6(12):753–755

    Google Scholar 

  15. Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21(3):427–431

    Google Scholar 

  16. Peters WH, Ranson WF, Sutton MA, Chu TC, Anderson J (1983) Application of digital image correlation methods to rigid body mechanics. Opt Eng 22(6):738–742

    Google Scholar 

  17. Marcellier H, Vescovo P, Varchon D, Vacher P, Humbert P (2001) Optical analysis of displacement and strain fields on human skin. Skin Res Technol 7(4):246

    Article  Google Scholar 

  18. Staloff IA, Guan E, Katz S, Rafailovitch M, Sokolov A, Sokolov S (2008) An in vivo study of the mechanical properties of facial skin and influence of aging using digital image speckle correlation. Skin Res Technol 14(2):127–134

    Article  Google Scholar 

  19. Thompson MS, Schell H, Lienau J, Duda GN (2007) Digital image correlation: a technique for determining local mechanical conditions within early bone callus. Med Eng Phys 29(7):820–823

    Article  Google Scholar 

  20. Zhang DS, Arola DD (2004) Applications of digital image correlation to biological tissues. J Biomed Opt 9(4):691–699

    Article  Google Scholar 

  21. Ward AG, Sanders PR (1958) The rheology of gelatin. In: Eirich FR (ed) Rheology, theory and applications. Academic, New York, pp 313–362

    Google Scholar 

  22. Hager EA (2004) Composite gelatin delivery system for bone regeneration. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  23. Jussila J, Leppaniemi A, Paronen M, Kulomaki E (2005) Ballistic skin simulant. Forensic Sci Int 150(1):63–71

    Article  Google Scholar 

  24. Sunaga T, Ikehira H, Furukawa S, Tamura M, Yoshitome E, Obata T et al (2003) Development of a dielectric equivalent gel for better impedance matching for human skin. Bioelectromagnetics 24(3):214–217

    Article  Google Scholar 

  25. Ulubayram K, Aksu E, Gurhan SID, Serbetci K, Hasirci N (2002) Cytotoxicity evaluation of gelatin sponges prepared with different cross-linking agents. J Biomater Sci Polym Ed 13(11):1203–1219

    Article  Google Scholar 

  26. Ankersen J, Birkbeck AE, Thomson RD, Vanezis P (1999) Puncture resistance and tensile strength of skin simulants. Proc Inst Mech Eng [H] 213(H6):493–501

    Google Scholar 

  27. Manschot JFM, Brakkee AJM (1986) The measurement and modelling of the mechanical properties of human skin in vivo. I. The measurement. J Biomech 19(7):511–515

    Article  Google Scholar 

  28. Abanto-Bueno J, Lambros J (2002) Investigation of crack growth in functionally graded materials using digital image correlation. Eng Fract Mech 69(14–16):1695–1711

    Article  Google Scholar 

  29. Abanto-Bueno J, Lambros J (2005) Experimental determination of cohesive failure properties of a photodegradable copolymer. Proc Soc Exp Mech 52:144–152

    Article  Google Scholar 

  30. Berfield T, Patel J, Shimmin R, Braun P, Lambros J, Sottos N (2007) Micro- and nanoscale deformation measurement of surface and internal planes via digital image correlation. Exp Mech 47(1):51–62

    Article  Google Scholar 

  31. Berfield TA, Patel JK, Shimmin RG, Braun PV, Lambros J, Sottos NR (2006) Fluorescent image correlation for nanoscale deformation measurements. Small 2(5):631–635

    Article  Google Scholar 

  32. Hall TJ, Bilgen M, Insana MF, Krouskop TA (1997) Phantom materials for elastography. IEEE Trans Ultrason Ferroelectr Freq Control 44(6):1355–1365

    Article  Google Scholar 

  33. McDermott MK, Chen TH, Williams CM, Markley KM, Payne GF (2004) Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin. Biomacromolecules 5(4):1270–1279

    Article  Google Scholar 

  34. Knauss WG, Chasiotis I, Huang Y (2003) Mechanical measurements at the micron and nanometer scales. Mech Mater 35(3–6):217–231

    Article  Google Scholar 

  35. Rao SS (2002) Applied numerical methods for engineers and scientists. Prentice Hall, Upper Saddle River

    Google Scholar 

  36. Muskhelishvili NI (1953) Some basic problems of the mathematical theory of elasticity, 3rd edn. Noordhoff, Groningen

    MATH  Google Scholar 

  37. Krehbiel JD (2008) Digital image correlation for improved detection of basal cell carcinoma. University of Illinois, Urbana

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Sottos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krehbiel, J.D., Lambros, J., Viator, J.A. et al. Digital Image Correlation for Improved Detection of Basal Cell Carcinoma. Exp Mech 50, 813–824 (2010). https://doi.org/10.1007/s11340-009-9324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-009-9324-8

Keywords

Navigation