Skip to main content

Advertisement

Log in

Control Theory Forecasts of Optimal Training Dosage to Facilitate Children’s Arithmetic Learning in a Digital Educational Application

  • Application Reviews and Case Studies
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Education can be viewed as a control theory problem in which students seek ongoing exogenous input—either through traditional classroom teaching or other alternative training resources—to minimize the discrepancies between their actual and target (reference) performance levels. Using illustrative data from \(n=784\) Dutch elementary school students as measured using the Math Garden, a web-based computer adaptive practice and monitoring system, we simulate and evaluate the outcomes of using off-line and finite memory linear quadratic controllers with constraintsto forecast students’ optimal training durations. By integrating population standards with each student’s own latent change information, we demonstrate that adoption of the control theory-guided, person- and time-specific training dosages could yield increased training benefits at reduced costs compared to students’ actual observed training durations, and a fixed-duration training scheme. The control theory approach also outperforms a linear scheme that provides training recommendations based on observed scores under noisy and the presence of missing data. Design-related issues such as ways to determine the penalty cost of input administration and the size of the control horizon window are addressed through a series of illustrative and empirically (Math Garden) motivated simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. A dynamical system is said to be controllable if it is possible to drive the system into a particular state through the use of manipulable control inputs (e.g., interventions, treatment, training). Technically, a system is controllable when the \(w \times (wr)\) controllability matrix,

    $$\begin{aligned} C = \begin{bmatrix} \mathbf{G }&\mathbf{B }\mathbf{G }&\mathbf{B }^2\mathbf{G }&\ldots&\mathbf{B }^{w-1}\mathbf{G } \end{bmatrix} \end{aligned}$$
    (19)

    has rank w (Zarchan & Musoff, 2000). The BDCM-X model is uncontrollable when constant slopes are included as latent variables.

References

  • Academy, K. (2017). Khan academy. Retrieved October 20, 2017, from https://www.khanacademy.org/

  • Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60(2), 255–265.

    Article  Google Scholar 

  • Alspach, D. (1975). A stochastic control algorithm for systems with control dependent plant and measurement noise. Computers& Electrical Engineering, 2(4), 297–306. https://doi.org/10.1016/0045-7906(75)90017-8

    Article  Google Scholar 

  • Åström, K. J., & Murray, R. M. (2008). Feedback systems: An introduction for scientists and engineers. Princeton: Princeton University Press.

    Google Scholar 

  • Bar-Shalom, Y., & Tse, E. (1976). Concepts and methods in stochastic control. In C. Leondes (Ed.), (Vol. 12, p. 99-172). Academic Press. https://doi.org/10.1016/B978-0-12-012712-2.50009-3

  • Bavdekar, V. A., Bhushan Gopaluni, R., & Shah, S. L. (2013). A comparison of moving horizon and bayesian state estimators with an application to a ph process. IFAC Proceedings Volumes, 46(32), 160–165. https://doi.org/10.3182/20131218-3-IN-2045.00152 10th IFAC International Symposium on Dynamics and Control of Process Systems.

    Article  Google Scholar 

  • Bellman, R. (1964). Control theory. Scientific American, 211, 186–200.

    Article  Google Scholar 

  • Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. N. (2002). The explicit linear quadratic regulator for constrained systems. Automatica, 38(1), 3–20.

    Article  Google Scholar 

  • Biddlecomb, B. D. (2002). Numerical knowledge as enabling and constraining fraction knowledge: An example of the reorganization hypothesis. The Journal of Mathematical Behavior, 21(2), 167–190. https://doi.org/10.1016/S0732-3123(02)00117-7

    Article  Google Scholar 

  • Blanton, M., Stephens, A., Knuth, E., Gardiner, A. M., Isler, I., & Kim, J. S. (2015). The development of children’s algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46(1), 39–87. https://doi.org/10.5951/jresematheduc.46.1.0039

    Article  Google Scholar 

  • Brinkhuis, M. J., Savi, A. O., Hofman, A. D., Coomans, F., van Der Maas, H. L., & Maris, G. (2018). Learning as it happens: A decade of analyzing and shaping a large-scale online learning system. Journal of Learning Analytics, 5(2), 29–46. https://doi.org/10.18608/jla.2018.52.3

    Article  Google Scholar 

  • Carver, C. S., & Scheier, M. F. (1982). Control theory: A useful conceptual framework for personality-social, clinical, and health psychology. Psychological Bulletin, 92, 111–135.

    Article  Google Scholar 

  • Chow, S. M., Grimm, K. J., Guillaume, F., Dolan, C. V., & McArdle, J. J. (2013). Regime-switching bivariate dual change score model. Multivariate Behavioral Research, 48(4), 463–502.

    Article  Google Scholar 

  • Chow, S. M., Hamaker, E. J., & Allaire, J. C. (2009). Using innovative outliers to detecting discrete shifts in dynamics in group-based state-space models. Multivariate Behavioral Research, 44, 465–496. https://doi.org/10.1080/00273170903103324

    Article  PubMed  Google Scholar 

  • Chow, S. M., Ho, M. H. R., Hamaker, E. J., & Dolan, C. V. (2010). Equivalences and differences between structural equation and state-space modeling frameworks. Structural Equation Modeling, 17, 303–332. https://doi.org/10.1080/10705511003661553

    Article  Google Scholar 

  • Chow, S. M., & Zhang, G. (2013). Nonlinear regime-switching state-space (RSSS) models. Psychometrika: Application Reviews and Case Studies, 78(4), 740–768.

    Article  Google Scholar 

  • Dowker, A. (2015). Individual differences in arithmetical abilities: The componential nature of arithmetic. In The Oxford handbook of numerical cognition (pp. 878–894). New York, NY: Oxford University Press.

  • Durbin, J., & Koopman, S. J. (2001). Time series analysis by state space methods. New York, NY: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199641178.001.0001

    Book  Google Scholar 

  • Goodwin, G., Seron, M. M., & de Don, J. A. (2005). Constrained control and estimation: An optimisation approach (1st ed.). London: Springer.

    Book  Google Scholar 

  • Graeber, A. O., & Tirosh, D. (1990). Insights fourth and fifth graders bring to multiplication and division with decimals. Educational Studies in Mathematics, 21(6), 565–588. https://doi.org/10.1007/BF00315945

    Article  Google Scholar 

  • Hackenberg, A. J., & Lee, M. Y. (2015). Relationships between students’ fractional knowledge and equation writing. Journal for Research in Mathematics Education, 46(2), 196–243.

    Article  Google Scholar 

  • Hadass, R., & Bransky, J. (1991). Meanings of division and their implication for science teaching—a survey amongst elementary school teachers. International Journal of Mathematical Education in Science and Technology, 22(2), 309–315. https://doi.org/10.1080/0020739910220216

    Article  Google Scholar 

  • Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Harvey, A. C. (2001). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jansen, B. R., Hofman, A. D., Savi, A., Visser, I., & van der Maas, H. L. (2016). Self-adapting the success rate when practicing math. Learning and Individual Differences, 51, 1–10. https://doi.org/10.1016/j.lindif.2016.08.027

    Article  Google Scholar 

  • Rawlings, J. B., Mayne, D., & Diehl, M. (2017). Model predictive control: Theory, design, and computation (2nd ed.). Madison: Nob Hill Publishing.

    Google Scholar 

  • Klinkenberg, S., Straatemeier, M., & van der Maas, H. L. J. (2011). Computer adaptive practice of Maths ability using a new item response model for on the fly ability and difficulty estimation. Computers& Education, 57(2), 1813–1824. https://doi.org/10.1016/j.compedu.2011.02.003.

    Article  Google Scholar 

  • Kuo, B. C. (1991). Automatic control systems (6th ed.). Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Kwon, W. H., & Han, S. H. (2005). Receding horizon control: Model predictive control for state models. London: Springer.

    Google Scholar 

  • Lee, J. E. (2007). Making sense of the traditional long division algorithm. The Journal of Mathematical Behavior, 26(1), 48–59. https://doi.org/10.1016/j.jmathb.2007.03.001

    Article  Google Scholar 

  • Li, Y., & Silver, E. A. (2000). Can younger students succeed where older students fail? An examination of third graders’ solutions of a division-with-remainder (DWR) problem. Journal of Mathematical Behavior, 19(2), 233–246. https://doi.org/10.1016/s0732-3123(00)00046-8

    Article  Google Scholar 

  • Liu, J., Wang, W., Golnaraghi, F., & Kubica, E. (2010). A novel fuzzy framework for nonlinear system control. Fuzzy Sets and Systems, 161, 186–200.

    Google Scholar 

  • Ljung, L., & Söderström. (1983). Theory and practice of recursive identification. Cambridge: MIT Press.

    Google Scholar 

  • Lo, J. J., & Watanabe, T. (1997). Developing ratio and proportion schemes: A story of a fifth grader. Journal for Research in Mathematics Education, 28(2), 216–236.

    Article  Google Scholar 

  • Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Lu, Q., & Zhang, X. (2016). A mini-course on stochastic control. In Control and inverse problems for partial differential equations (pp. 171–254). https://doi.org/10.1142/9789813276154_0004

  • Lütkepohl, H. (2005). Introduction to multiple time series analysis (2nd ed.). New York, NY: Springer.

    Book  Google Scholar 

  • Maris, G., & van der Maas, H. (2012). Navigating massive open online courses. Psychometrika, 77(4), 615–633. https://doi.org/10.1007/s11336-012-9288-y

    Article  Google Scholar 

  • McArdle, J. J., & Hamagami, F. (2001). Latent difference score structural models for linear dynamic analysis with incomplete longitudinal data. In L. Collins & A. Sayer (Eds.), New methods for the analysis of change (pp. 139–175). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Molenaar, P. C. (2010). Note on optimization of individual psychotherapeutic processes. Journal of Mathematical Psychology, 54(1), 208–213.

    Article  Google Scholar 

  • Mulligan, J. T., & Mitchelmore, M. C. (1997). Young children’s intuitive models of multiplication and division. Journal for Research in Mathematics Education, 28(3), 309–330.

    Article  Google Scholar 

  • Ou, L., Hunter, M. D., & Chow, S. (2019). What’s for dynr: A package for linear and nonlinear dynamic modeling in R. The R Journal. https://doi.org/10.32614/RJ-2019-012

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, J. Y., Joo, S. H., Cornillie, F., van der Maas, H. L., & Van den Noortgate, W. (2019). An explanatory item response theory method for alleviating the cold-start problem in adaptive learning environments. Behavior Research Methods, 51(2), 895–909. https://doi.org/10.3758/s13428-018-1166-9

    Article  PubMed  Google Scholar 

  • Rivera, D. E., Pew, M. D., & Collins, L. M. (2007). Using engineering control principles to inform the design of adaptive interventions: A conceptual introduction. Drug and Alcohol Dependence, 88S, S31–S40.

    Article  Google Scholar 

  • Rose, T. (2016). The end of average: How we succeed in a world that values sameness. San Francisco, CA: HarperOne. http://www.harpercollins.com/9780062358363/the-end-of-average

  • Savi, A. O., van der Maas, H. L. J., & Maris, G. K. J. (2015). Navigating massive open online courses. Science, 347(6225), 958. https://doi.org/10.1126/science.347.6225.958.

    Article  PubMed  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464. https://doi.org/10.1214/aos/1176344136

    Article  Google Scholar 

  • Schweppe, F. (1965). Evaluation of likelihood functions for Gaussian signals. IEEE Transactions on Information Theory, 11, 61–70.

    Article  Google Scholar 

  • Seron, M. M., Goodwin, G. C., & De Doná, J. A. (2003). Characterisation of receding horizon control for constrained linear systems. Asian Journal of Control, 5(2), 271–286.

    Article  Google Scholar 

  • Shumway, R. H. (2000). Dynamic mixed models for irregularly observed time series. Resenhas—Reviews of the Institute of Mathematics and Statistics, 4, 433–456.

    Google Scholar 

  • Shumway, R. H., & Stoffer, D. S. (2006). Time series analysis and its applications. Springer texts in statisticsNew York, NY: Springer.

    Google Scholar 

  • Taguchi, G., Chowdhury, S., & Wu, Y. (2005). Tagushi’s quality engineering handbook. Hoboken, NJ: Wiley. https://doi.org/10.1002/9780470258354

    Book  Google Scholar 

  • van den Berg, J. (2014). Iterated LQR smoothing for locally-optimal feedback control of systems with non-linear dynamics and non-quadratic cost. In 2014 American control conference (pp. 1912–1918). https://doi.org/10.1109/ACC.2014.6859404

  • Wang, Q., Molenaar, P., Harsh, S., Freeman, K., Xie, J., Gold, C., & Ulbrecht, J. (2014). Personalized state-space modeling of glucose dynamics for type 1 diabetes using continuously monitored glucose, insulin dose, and meal intake: An extended Kalman filter approach. Journal of Diabetes Science and Technology, 8(2), 331–345. https://doi.org/10.1177/1932296814524080

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarchan, P., & Musoff, H. (2000). Fundamentals of Kalman filtering: A practical approach. Progress in astronautics and aeronautics. Reston: American Institute of Aeronautics and Astronautics Inc.

    Google Scholar 

  • Zhang, J., Li, W., Wang, K., & Jin, R. (2014). Process adjustment with an asymmetric quality loss function. Journal of Manufacturing Systems, 33(1), 159–165. https://doi.org/10.1016/j.jmsy.2013.10.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sy-Miin Chow.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Funding for this study was provided by the National Institutes of Health (NIH) Grant R01GM105004, the NIH Intensive Longitudinal Health Behavior Cooperative Agreement Program U24AA027684, National Science Foundation Grants BCS-1052736 and IGE-1806874, and the Pennsylvania State University Quantitative Social Sciences Initiative and UL TR000127 from the National Center for Advancing Translational Sciences.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (r 21 KB)

Supplementary file 2 (r 10 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, SM., Lee, J., Hofman, A.D. et al. Control Theory Forecasts of Optimal Training Dosage to Facilitate Children’s Arithmetic Learning in a Digital Educational Application. Psychometrika 87, 559–592 (2022). https://doi.org/10.1007/s11336-021-09829-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-021-09829-3

Keywords

Navigation