Skip to main content
Log in

Effects of vibratory platform training on the histomorphometric parameters of the soleus muscle in obese Wistar rats

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Background

The increasing of obesity is one of the main challenges of public health, with an incentive to the development of healthy life habits and practise of physical exercise. Among the physical exercises, the use of whole body vibration is highlighted, which can promote gain of muscle strength.

Aims

This study aimed atevaluating the effects that vibratory platform causes on the histomophometry and fiber types of the soleus muscle of Wistar rats with induced obesity by monosodium glutamate (MSG).

Methods

Thirty-two male Wistar rats were used, 16 of which were induced by obesity with intradermal injections of MSG, equally randomized into four groups: control (GC), control with intervention (GCP), obese (GO), and obese with intervention (GOP). At the 70 days, the training on vibratory platform was started adapted to a frequency of 60 Hz and amplitude of 2 mm, performed 3 times a week, with a duration of 10 min, during 8 consecutive weeks. At 130 days, the animals were weighed and the nasoanal length was measured; then they were euthanized and the soleus muscles were collected and processed for analysis. Data were statistically analyzed about the homogeneity of variances by the Bartlett’s test, about the normality by Shapiro–Wilk’s test, then ANOVA of two factors and Tukey-HSD follow-up tests, adopting the significance level of 5%.

Results

Morphometrically, the obese groups presented muscle hypotrophy (p < 0.01) and the training caused increase in the fibers (p = 0.03), increase in the number of nuclei (p < 0.01), and decrease of connective tissue (p < 0.01). Meanwhile, there was no distinction among the muscle fiber types after the training on the vibratory platform, which is composed of oxidative fibers.

Conclusion

The training on the vibratory platform induced beneficial effects in the muscle tissue of obese rats; however, both obesity and training did not influence on the fiber type of the soleus muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BW:

Body weight

CEUA:

Animal Ethics Committee

GC:

Control group

GCP:

Control group + vibratory platform

GO:

Obese group

GOP:

Obese group + vibratory platform

LABEF:

Laboratory of structural and functional biology

LELRF:

Laboratory of physical injury and physiotherapeutic resources

MSG:

Monosodium glutamate

NL:

Nasoanal length

NCDs:

Chronic non-communicable diseases

OS:

Obesity sarcopenic

UNIOESTE:

Universidade Estadual do Oeste do Paraná

References

  1. WHO. World Health Organization. Disponível em: https://www.who.int/topics/obesity/en/. Acesso em: 05 jan. 2019.

  2. Tomlinson DJ (2016) The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology 17(3):467–483. https://doi.org/10.1007/s10522-015-9626-4

    Article  CAS  PubMed  Google Scholar 

  3. Rahemi H, Nigam N, Wakeling JM (2015) The effect of intramuscular fat on skeletal muscle mechanics: implications for the elderly and obese. J R Soc Interface 12(109):365–372. https://doi.org/10.1098/rsif.2015.0365

    Article  CAS  Google Scholar 

  4. Talbot J, Maves L (2016) Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip Rev Dev Biol 5:518–534. https://doi.org/10.1002/wdev.230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Almeida L, Ramos K, Randow R, Guerra V (2017) Estratégias e desafios da gestão da atenção primária à saúde no controle e prevenção da obesidade. Rev Gestão Saúde 8(1):114–139

    Google Scholar 

  6. Schuh DS, Goulart MR, Barbiero SM, Sica CD, Borges R et al (2017) Escola saudável é mais feliz: design e protocolo de um ensaio clinico randomizado desenvolvido para prevenir o ganho de peso em crianças. Arq Bras Cardiol 108(6):501–507. https://doi.org/10.5935/abc.20170072

    Article  PubMed  PubMed Central  Google Scholar 

  7. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96(3):183–195. https://doi.org/10.1007/s00223-014-9915-y

    Article  CAS  PubMed  Google Scholar 

  8. Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17:162–184. https://doi.org/10.1016/j.cmet.2012.12.012

    Article  CAS  PubMed  Google Scholar 

  9. Anwer S, Alghadir A, Zafar H, Al-Eisa E (2016) Effect of whole body vibration training on quadriceps muscle strength in individuals with knee osteoarthritis: a systematic review and meta analysis. Physiotherapy 102(2):145–151. https://doi.org/10.1016/j.physio.2015.10.004

    Article  PubMed  Google Scholar 

  10. Cerciello S, Rossi S, Visonà E, Corona K, Oliva F (2016) Clinical applications of vibration therapy in orthopaedic practice. Muscles Ligaments Tendons J 6(1):147–156. https://doi.org/10.11138/mltj/2016.6.1.147

    Article  PubMed  PubMed Central  Google Scholar 

  11. Corbiere TF, Weinheimer-Haus EM, Judex S, Koh TJ (2018) Low-intensity vibration improves muscle healing in a mouse model of laceration injury. J Funct Morphol Kinesiol 3(1):1. https://doi.org/10.3390/jfmk3010001

    Article  PubMed  Google Scholar 

  12. Kaneguchi A, Ozawa J, Kawamata S, Kurose T, Yamaoka K (2014) Intermittent whole-body vibration attenuates a reduction in the number of the capillaries in unloaded rat skeletal muscle. BMC Musculoskelet Disord 15(315):01–9. https://doi.org/10.1186/1471-2474-15-315

    Article  Google Scholar 

  13. Komrakova M, Sehmisch S, Tezval M, Ammon J, Lieberwirth P, Sauerhoff C et al (2013) Identification of a vibration regime favorable for bone healing and muscle in estrogen-deficient rats. Calcif Tissue Int 92(6):509–520. https://doi.org/10.1007/s00223-013-9706-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rubio-Arias JÁ, Ramos-Campo DJ, Esteban P, Martínez F, Jiménez JF (2018) Effect of 6-weeks WBVT on the behavior of the lower limb muscle fibres during vertical jumping. J Sports Sci 36(4):398–406. https://doi.org/10.1080/02640414.2017.1309059

    Article  PubMed  Google Scholar 

  15. Jacobson BH, Monaghan TP, Sellers JH, Conchola EC, Pope ZK, Glass RG (2017) Acute effect of biomechanical muscle stimulation on the counter-movement vertical jump power and velocity in division i football players. J Strength Cond Res 31(5):1259–1264. https://doi.org/10.1519/JSC.0000000000001136

    Article  PubMed  Google Scholar 

  16. Cantelli KR, Soares GM, Ribeiro RA, Balbo SL, Lubaczeuski C, Boschero AC, Araújo ACF, Bonfleur ML (2017) Duodenal-jejunal bypass normalizes pancreatic islet proliferation rate and function but not hepatic steatosis in hypothalamic obese rats. Braz J Med Biol Res 50(5):e5858. https://doi.org/10.1590/1414-431X20175858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Leung KS, Chow SKH, Cheunga WH (2017) Inflammation and age-associated skeletal muscle deterioration (sarcopaenia). J Orthop Translat 10:94–101. https://doi.org/10.1016/j.jot.2017.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pertti AL, Kakihata CMM, Wutzke MLS, Torrejais MM, Ribeiro LFC, Bertolini GRFB (2019) Effects of mechanical vibration in neuromuscular junctions and fiber type of the soleus muscle of oophorectomized wistar rats. Rev Bras Ortop 54(5):572–578. https://doi.org/10.1055/s-0039-1697016

    Article  Google Scholar 

  19. Thomas GA, Kraemer WJ, Comstock BA, Dunn-Lewis C, Maresh CM, Volek JS (2013) Obesity, growth hormone and exercise. Sports Med 43(9):839–849. https://doi.org/10.1007/s40279-013-0064-7

    Article  PubMed  Google Scholar 

  20. Bollinger L (2017) Potential contributions of skeletal muscle contractile dysfunction to altered biomechanics in obesity. Gait Posture 56:100–107. https://doi.org/10.1016/j.gaitpost.2017.05.003

    Article  PubMed  Google Scholar 

  21. Tamilarasan KP, Temmel H, Das SK, Zoughbi WA, Schauer S, Vesely PW et al (2012) Skeletal muscle damage and impaired regeneration due to LPL-mediated lipotoxicity. Cell Death Dis 3(354):01–8. https://doi.org/10.1038/cddis.2012.91

    Article  CAS  Google Scholar 

  22. Matsakas A, Prosdocimo DA, Mitchell R, Collins-Hooper H, Giallourou N, Swann JR et al (2015) Investigating mechanisms underpinning the detrimental impact of a high-fat diet in the developing and adult hypermuscular myostatin null mouse. Skelet Muscle 5(38):01–21. https://doi.org/10.1186/s13395-015-0063-5

    Article  CAS  Google Scholar 

  23. Akhmedov D, Berdeaux R (2013) The effects of obesity on skeletal muscle regeneration. Front Physiol 4(371):01–12. https://doi.org/10.3389/fphys.2013.00371

    Article  Google Scholar 

  24. Łochyński D, Kaczmarek D, Redowicz MJ, Celichwski J (2013) Long-term effects of whole-body vibration on motor unit contractile function and myosin heavy chain composition in the rat medial gastrocnemius. J Musculoskelet Neuronal Interact 13(4):430–441

    PubMed  Google Scholar 

  25. Krajnak K, Riley DA, Wu J, Mcdowell T, Welcome DE, Xu XS et al (2012) Frequency-dependent effects of vibration on physiological systems: experiments with animals and other human surrogates. Ind Health 50(5):343–353

    Article  PubMed  Google Scholar 

  26. Yan JG, Matloub HS, Sanger JR, Zhang LL, Riley DA (2005) Vibration-induced disruption of retrograde axoplasmic transport in peripheral nerve. Muscle Nerve 32:521–526. https://doi.org/10.1002/mus.20379

    Article  PubMed  Google Scholar 

  27. Córdova A, Navas FJ (2000) Os radicais livres e o dano muscular produzido pelo exercício: papel dos antioxidants. Rev Bras Med Esporte 6(5):204–208. https://doi.org/10.1590/S1517-86922000000500006

    Article  Google Scholar 

  28. Waugh S, Kashon ML, Li S, Miller GR, Johnson C, Krajnak K (2016) Transcriptional pathways altered in response to vibration in a model of hand-arm vibration syndrome. J Occup Environ Med 58(4):344–350. https://doi.org/10.1097/JOM.0000000000000705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barbe MF, Barr AE (2006) Inflammation and the pathophysiology of work-related musculoskeletal disorders. Brain Behav Immun 20(5):423–429. https://doi.org/10.1016/j.bbi.2006.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Glazebrook MA, Wright JR Jr, Langman M, Stanish WD, Lee JM (2008) Histological analysis of achilles tendons in an overuse rat model. J Orthop Res 26(6):840–846. https://doi.org/10.1002/jor.20546

    Article  PubMed  Google Scholar 

  31. Parks AN, McFaline-Figueroa J, Coogan A, Poe-Yamagata E, Guldberg RE, Platt MO et al (2017) Supraspinatus tendon overuse results in degenerative changes to tendon insertion region and adjacent humeral cartilage in a rat model. J Orthop Res 35(9):1910–1918

    Article  CAS  PubMed  Google Scholar 

  32. Chen YM, Lee HC, Chen MT, Huang CC, Chen WC (2018) Dehydroepiandrosterone supplementation combined with Weight-Loading Whole-Body Vibration Training (WWBV) affects exercise performance and muscle glycogen storage in middle-aged C57BL/6 mice. Int J Med Sci 15(6):564–573. https://doi.org/10.7150/ijms.233522018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sitnick M, Bodine SC, Rutledge JC (2009) Chronic high fat feeding attenuates load-induced hypertrophy in mice. J Physiol 587(23):5753–5765. https://doi.org/10.1113/jphysiol.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gavin TP, Stallings HW, Zwetsloot KA, Westerkamp LM, Ryan NA, Moore RA et al (2005) Lower capillary density but no difference in VEGF expression in obese vs. lean young skeletal muscle in humans. J Appl Physiol 98(1):315–321. https://doi.org/10.1152/japplphysiol.00353.2004

    Article  CAS  PubMed  Google Scholar 

  35. Yan Z, Lira VA, Greene NP (2012) Exercise training-induced regulation of mitochondrial quality. Exerc Sport Sci Rev 40(3):159–164. https://doi.org/10.1097/JES.0b013e3182575599

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tidball JG, Villalta SG (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:1173–1187. https://doi.org/10.1152/ajpregu.00735.2009

    Article  CAS  Google Scholar 

  37. Gundersen K (2016) Muscle memory and a new cellular model for muscle atrophy and hypertrophy. J Exp Biol 219(2):235–242. https://doi.org/10.1242/jeb.124495

    Article  PubMed  Google Scholar 

  38. Baoge L, Steen EVD, Rimbaut S, Philips N, Witvrouw E, Almqvist KF et al (2012) Treatment of skeletalmuscle injury: a review. Int Sch Res Netw 2012:01–7. https://doi.org/10.5402/2012/689012

    Article  Google Scholar 

  39. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. https://doi.org/10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bucci M, Vinagre EC, Campos GER, Curi R, Pithon-Curi TC (2005) Efeitos do treinamento concomitante hipertrofia e endurance no músculo esquelético. R Bras Ci Mov 13(1):17–28

    Google Scholar 

  41. Ramos LA, Carvalho RT, Abdalla RJ, Ingham SJM (2015) Surgical treatment for muscle injuries. Curr Rev Musculoskelet Med 8(2):188–192. https://doi.org/10.1007/s12178-015-9272-0

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44(3):318–331. https://doi.org/10.1002/mus.22094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wright T, Langley-Evans SC, Voigt JP (2011) The impact of maternal cafeteria diet on anxiety-related behaviour and exploration in the offspring. Physiol Behav 103(2):164–172. https://doi.org/10.1016/j.physbeh.2011.01.008

    Article  CAS  PubMed  Google Scholar 

  44. Serrano AL, Muñoz-Cánoves P (2010) Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res 316:3050–3058. https://doi.org/10.1016/j.yexcr.2010.05.035

    Article  CAS  PubMed  Google Scholar 

  45. Rocha WA, Gobbi GA, Araujo VF, Santuzzi CH (2010) Muscle morphological changes in response to passive stretching in an animal model of prolonged immobilization of hind limb. Rev Bras Med Esporte 16(6):450–454. https://doi.org/10.1590/S1517-86922010000600011

    Article  Google Scholar 

  46. Santana Junior A, Debastiani JC, Buratti P, Peretti AL, Kunz RI, Brancalhão RMC et al (2018) Sericina e natação sobre parâmetros histomorfométricos de músculo plantar desnervado de ratos Wistar. Einstein 16(1):01–6. https://doi.org/10.1590/S1679-45082018AO4137

    Article  Google Scholar 

  47. Haizlip KM, Harrison BC, Leinwand LA (2015) Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology 30(1):30–39. https://doi.org/10.1152/physiol.00024.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Camargo Filho JCS, Vanderlei LCM, Camargo RCT, Oliveira DAR, Oliveira Júnior SA, Pai VD (2005) Análise histológica, histoquímica e morfométrica do músculo sóleo de ratos submetidos a treinamento físico em esteira rolante. Arq Ciênc Saúde 12(3):196–199

    Google Scholar 

  49. Deschenes MR, Adan MA, Kapral MC, Kressin KA, Leathrum CM, Seo A et al (2018) Neuromuscular adaptability of male and female rats to muscle unloading. J Neurosci Res 96(2):284–296. https://doi.org/10.1002/jnr.24129

    Article  CAS  PubMed  Google Scholar 

  50. Eshima H, Tamura Y, Kakehi S, Kurebayashi N, Murayama T, Nakamura K et al (2017) Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol Rep 5(7):01–12. https://doi.org/10.14814/phy2.13250

    Article  CAS  Google Scholar 

  51. Adachi T, Kikuchi N, Yasuda K, Anahara R, Gu N, Matsunaga T et al (2007) Fibre type distribution and gene expression levels of both succinate dehydrogenase and peroxisome proliferator-activated receptor-γ coactivator-1α of fibres in the soleus muscle of Zucker diabetic fatty rats. Exp Physiol 92(2):449–455. https://doi.org/10.1113/expphysiol.2006.035451

    Article  CAS  PubMed  Google Scholar 

  52. Oberbach A, Bossenz Y, Lehmann S, Niebauer J, Adams V, Paschke R et al (2006) Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care 29(4):895–900

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladson Ricardo Flor Bertolini.

Ethics declarations

Conflict of Interest

All authors report no conflicts of interest.

Ethics approval

The research Project was approved by the Animal Ethics Committee (CEUA) from UNIOESTE (Number 08/18).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boaretto, M.L., de Andrade, B.Z., Maciel, J.I.H.N. et al. Effects of vibratory platform training on the histomorphometric parameters of the soleus muscle in obese Wistar rats. Sport Sci Health 16, 501–510 (2020). https://doi.org/10.1007/s11332-020-00632-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-020-00632-8

Keywords

Navigation