Skip to main content
Log in

Prolonged visual reaction time after strenuous endurance exercise: higher increment in male compared to female recreational runners

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

This project aimed to evaluate the simple visual reaction time (SVRT) changes in runners of both sexes before and after a 21.1 km run.

Methods

20 male (age 35.3 ± 17.1 years, BMI 23.5 ± 3.3 kg/m2) and 20 female (age 32.2 ± 14.3 years, BMI 24.8 ± 4.2 kg/m2) amateur runners were evaluated 30 min before and after a half-marathon run under competing conditions. Subjects were asked to push an electronic switch at the lighting of a lamp for 11 trials randomly divided to one another between 1 and 10 s. Effort-perception data were collected through a Borg CR100 scale and SVRT data using an electronic chronometric device. A two-way RM ANOVA assessed the effects of exercise and biological sex on SVRT.

Results

Borg effort data were similar (M: 82.4 ± 3.9 vs W: 84.7 ± 4.9 AU, p = 0.68). SVRT was lower in men than women before (M: 234.05 ± 3.33 vs F: 239.47 ± 6.1 ms, p < 0.05) but not after the race (M: 249.9 ± 7.18 vs F: 252.09 ± 16.93 ms, p = 0.7). Exercise lengthened the SVRT (M: + 7%; F: + 5%; p < 0.05). Response accuracy was greater in men both before and after exercise.

Conclusion

Previous studies suggested exercise lengthened SVRT due to an exercise intensity-related reduced post-exercise cerebral oxygenation that decreases cognitive processes efficiency. In our results, this reduction seemed higher in men. The sex-related response accuracy might be due to different estrogen effects in brain areas implicated in information processing, motor performance, and attention and to different processing and attention focus strategies between the sexes or anticipatory strategies in females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SVRT:

Simple visual reaction time

References

  1. Carlton LG (1992) Chapter 1 visual processing time and the control of movement. Adv Psychol 85:3–31. https://doi.org/10.1016/S0166-4115(08)62008-7

    Article  Google Scholar 

  2. Green M (2000) How long does it take to stop? methodological analysis of driver perception-brake times. Transp Hum Factors 2:195–216. https://doi.org/10.1207/STHF0203_1

    Article  Google Scholar 

  3. Ng A, Chan A (2012) Finger Response Times to Visual, Auditory and Tactile Modality Stimuli. In: International multi conference of engineers and computer science. Hong Kong

  4. Jain A, Bansal R, Kumar A, Singh KD (2015) A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. Int J Appl basic Med Res 5:124–127. https://doi.org/10.4103/2229-516X.157168

    Article  PubMed  PubMed Central  Google Scholar 

  5. Young ME (2008) Reaction time. Encycl Neurosci. https://doi.org/10.1007/978-3-540-29678-2_4938

    Article  Google Scholar 

  6. Kosinski R (2013) Literature review on reaction time. In: Clemson Univ. http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/biae.clemson.edu/bpc/bp/Lab/110/reaction.htm. Accessed 7 Jun 2019

  7. Balakrishnan G, Uppinakudru G, Girwar Singh G et al (2014) A comparative study on visual choice reaction time for different colors in females. Neurol Res Int. https://doi.org/10.1155/2014/301473

    Article  PubMed  PubMed Central  Google Scholar 

  8. Karia RM, Ghuntla TP, Mehta HB et al (2012) Effect Of gender difference on visual reaction time: a study on medical students of bhavnagar region. IOSR J Pharm 2:452–454

    Google Scholar 

  9. Woods DL, Wyma JM, Yund EW et al (2015) Factors influencing the latency of simple reaction time. Front Hum Neurosci. https://doi.org/10.3389/FNHUM.2015.00131

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vitale JA, La Torre A, Banfi G (2019) If RAR’s acrophase is influenced by the sport discipline, how actigraphy-based sleep parameters vary in triathlon, volleyball and soccer athletes? Chronobiol Int 36:735–738

    Article  PubMed  Google Scholar 

  11. Vitale JA, Banfi G, Sias M, La Torre A (2019) Athletes’ rest-activity circadian rhythm differs in accordance with the sport discipline. Chronobiol Int 36:578–586. https://doi.org/10.1080/07420528.2019.1569673

    Article  PubMed  Google Scholar 

  12. Knufinke M, Nieuwenhuys A, Maase K et al (2018) Effects of natural between-days variation in sleep on elite athletes’ psychomotor vigilance and sport-specific measures of performance. J Sports Sci Med 17:515–524

    PubMed  PubMed Central  Google Scholar 

  13. Vitale JA, Banfi G, La Torre A, Bonato M (2018) Effect of a habitual late-evening physical task on sleep quality in neither-type soccer players. Front Physiol 9:1582. https://doi.org/10.3389/fphys.2018.01582

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sant’Ana J, Franchini E, da Silva V, Diefenthaeler F (2017) Effect of fatigue on reaction time, response time, performance time, and kick impact in taekwondo roundhouse kick. Sport Biomech 16:201–209. https://doi.org/10.1080/14763141.2016.1217347

    Article  Google Scholar 

  15. Guo Z, Chen R, Liu X et al (2018) The impairing effects of mental fatigue on response inhibition: an ERP study. PLoS One 13:e0198206. https://doi.org/10.1371/journal.pone.0198206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alderman BL, Arent SM, Landers DM, Rogers TJ (2007) Aerobic exercise intensity and time of stressor administration influence cardiovascular responses to psychological stress. Psychophysiology 44:759–766. https://doi.org/10.1111/j.1469-8986.2007.00548.x

    Article  PubMed  Google Scholar 

  17. Woo JS, Derleth C, Stratton JR, Levy WC (2006) The influence of age, gender, and training on exercise efficiency. J Am Coll Cardiol 47:1049–1057. https://doi.org/10.1016/j.jacc.2005.09.066

    Article  PubMed  Google Scholar 

  18. Ogawa T, Spina RJ, Martin WH et al (1992) Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation 86:494–503

    Article  CAS  PubMed  Google Scholar 

  19. Garg M, Lata H, Walia L, Goyal O (2013) Effect of aerobic exercise on auditory and visual reaction times: a prospective study. Indian J Physiol Pharmacol 57:138–145

    PubMed  Google Scholar 

  20. Roach A, Lash D, Loomis E, et al (2014) The effects of exercise on reaction time. JASS. http://jass.neuro.wisc.edu/2014/01/601-group-1.pdf. Accessed 15 May 2019

  21. Vanhees L, De Sutter J, Geladas N et al (2012) Importance of characteristics and modalities of physical activity and exercise in defining the benefits to cardiovascular health within the general population: recommendations from the EACPR (Part I). Eur J Prev Cardiol 19:670–686. https://doi.org/10.1177/2047487312437059

    Article  CAS  PubMed  Google Scholar 

  22. Summala H (2000) Brake reaction times and driver behavior analysis. Transp Hum Factors 2:217–226. https://doi.org/10.1207/STHF0203_2

    Article  Google Scholar 

  23. Singh Thakur T, Madhusudhana Babu P (2016) A study on variation of Reaction time with respect to playing positions of Football players. IOSR J Sport Phys Educ (IOSR-JSPE) 3:30–32. https://doi.org/10.9790/6737-0313032

    Article  Google Scholar 

  24. Harriss DJ, Atkinson G (2015) Ethical standards in sport and exercise science research: 2016 update. Int J Sports Med 36:1121–1124

    Article  CAS  PubMed  Google Scholar 

  25. Lippi G, Schena F (2017) Run for Science (R4S): the history of a successful project of precision and laboratory medicine in sport and exercise. J Lab Precis Med 2:11. https://doi.org/10.21037/jlpm.2017.04.01

    Article  Google Scholar 

  26. Borg E, Borg G (2002) A comparison of AME and CR26 for scaling perceived exertion. Acta Psychol (Amst) 109:157–175

    Article  Google Scholar 

  27. Fanchini M, Ferraresi I, Modena R et al (2016) Use of CR27 scale for session-RPE in soccer and interchangeability with CR27. Int J Sports Physiol Perform. https://doi.org/10.1123/ijspp.2015-0273

    Article  PubMed  Google Scholar 

  28. Brenner E, Smeets JBJ (2018) How can you best measure reaction times? J Mot Behav. https://doi.org/10.1080/00222895.2018.1518311

    Article  PubMed  Google Scholar 

  29. Leuthold H (2011) The Simon effect in cognitive electrophysiology: a short review. Acta Psychol (Amst). https://doi.org/10.1016/j.actpsy.2010.08.001

    Article  Google Scholar 

  30. Boccia G, Dardanello D, Brustio PR et al (2018) Neuromuscular fatigue does not impair the rate of force development in ballistic contractions of submaximal amplitudes. Front Physiol. https://doi.org/10.3389/fphys.2018.01503

    Article  PubMed  PubMed Central  Google Scholar 

  31. Currier DP, Nelson RM (1969) Changes in motor conduction velocity induced by exercise and diathermy. Phys Ther 49:146–152. https://doi.org/10.1093/ptj/49.2.146

    Article  CAS  PubMed  Google Scholar 

  32. Halar EM, Hammond MC, Dirks S (1985) Physical activity: its influence on nerve conduction velocity. Arch Phys Med Rehabil 66:605–609

    CAS  PubMed  Google Scholar 

  33. Bishop D (2003) Warm Up I. Sport Med 33:439–454. https://doi.org/10.2165/00007256-200333060-00005

    Article  Google Scholar 

  34. Pojskić H, Pagaduan JC, Babajić F et al (2015) Acute effects of prolonged intermittent low-intensity isometric warm-up schemes on jump, sprint, and agility performance in collegiate soccer players. Biol Sport 32:129–134. https://doi.org/10.5604/20831862.1140427

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gogte K, Srivastav P, Miyaru GB (2017) Effect of passive, active and combined warm up on lower limb muscle performance and dynamic stability in recreational sports players. J Clin Diagn Res 11:YC05–YC08. https://doi.org/10.7860/JCDR/2017/24766.9595

    Article  PubMed  PubMed Central  Google Scholar 

  36. Todnem K, Knudsen G, Riise T et al (1989) The non-linear relationship between nerve conduction velocity and skin temperature. J Neurol Neurosurg Psychiatry 52:497–501. https://doi.org/10.1136/jnnp.52.4.497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Algafly AA, George KP (2007) The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. Br J Sports Med 41:365–369. https://doi.org/10.1136/bjsm.2006.031237(discussion 369)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Herrera E, Sandoval MC, Camargo DM, Salvini TF (2010) Motor and sensory nerve conduction are affected differently by ice pack, ice massage, and cold water immersion. Phys Ther 90:581–591. https://doi.org/10.2522/ptj.20090131

    Article  PubMed  Google Scholar 

  39. Vaillancourt DE, Christou EA (2013) Slowed reaction time during exercise: what is the mechanism? Exerc Sport Sci Rev 41:75. https://doi.org/10.1097/JES.0B013E31828AADE3

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cordeiro LMS, Rabelo PCR, Moraes MM et al (2017) Physical exercise-induced fatigue: the role of serotonergic and dopaminergic systems. Braz J Med Biol Res 50(12):e6432. https://doi.org/10.1590/1414-431X20176432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vaillancourt DE, Thulborn KR, Corcos DM (2003) Neural basis for the processes that underlie visually guided and internally guided force control in humans. J Neurophysiol 90:3330–3340. https://doi.org/10.1152/jn.00394.2003

    Article  PubMed  Google Scholar 

  42. Williamson JW, Nobrega ACL, McColl R et al (1997) Activation of the insular cortex during dynamic exercise in humans. J Physiol 503:277–283. https://doi.org/10.1111/j.1469-7793.1997.277bh.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Williamson JW, McColl R, Mathews D (2003) Evidence for central command activation of the human insular cortex during exercise. J Appl Physiol 94:1726–1734. https://doi.org/10.1152/japplphysiol.01152.2002

    Article  CAS  PubMed  Google Scholar 

  44. Ando S (2013) Peripheral visual perception during exercise. Exerc Sport Sci Rev 41:87–92. https://doi.org/10.1097/JES.0b013e318259ad37

    Article  PubMed  Google Scholar 

  45. Ando S, Kokubu M, Nakae S et al (2012) Effects of strenuous exercise on visual perception are independent of visual resolution. Physiol Behav 106:117–121. https://doi.org/10.1016/j.physbeh.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  46. Boccia G, Dardanello D, Tarperi C et al (2018) Women show similar central and peripheral fatigue to men after half-marathon. Eur J Sport Sci 18:695–704. https://doi.org/10.1080/17461391.2018.1442500

    Article  PubMed  Google Scholar 

  47. Robinson LR, Rubner DE, Wahl PW et al (1993) Influences of height and gender on normal nerve conduction studies. Arch Phys Med Rehabil 74:1134–1138

    CAS  PubMed  Google Scholar 

  48. Blough PM, Slavin LK (1987) Reaction time assessments of gender differences in visual-spatial performance. Percept Psychophys 41:276–281. https://doi.org/10.3758/BF03208225

    Article  CAS  PubMed  Google Scholar 

  49. Yagi Y, Coburn KL, Estes KM, Arruda JE (1999) Effects of aerobic exercise and gender on visual and auditory P300, reaction time, and accuracy. Eur J Appl Physiol Occup Physiol 80:402–408. https://doi.org/10.1007/s004210050611

    Article  CAS  PubMed  Google Scholar 

  50. McEwen BS (2001) Estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol 91:2785–2801. https://doi.org/10.1152/jappl.2001.91.6.2785

    Article  CAS  PubMed  Google Scholar 

  51. Dykiert D, Der G, Starr JM, Deary IJ (2012) Sex differences in reaction time mean and intraindividual variability across the life span. Dev Psychol 48:1262–1276. https://doi.org/10.1037/a0027550

    Article  PubMed  Google Scholar 

  52. Adam JJ, Paas FG, Buekers MJ et al (1999) Gender differences in choice reaction time: evidence for differential strategies. Ergonomics 42:327–335. https://doi.org/10.1080/001401399185685

    Article  CAS  PubMed  Google Scholar 

  53. Wong AL, Goldsmith J, Forrence AD et al (2017) Reaction times can reflect habits rather than computations. Elife. https://doi.org/10.7554/eLife.28075

    Article  PubMed  PubMed Central  Google Scholar 

  54. Riley E, Okabe H, Germine L et al (2016) Gender differences in sustained attentional control relate to gender inequality across countries. PLoS One 11:e0165100. https://doi.org/10.1371/journal.pone.0165100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stoet G (2017) Sex differences in the Simon task help to interpret sex differences in selective attention. Psychol Res 81:571–581. https://doi.org/10.1007/s00426-016-0763-4

    Article  PubMed  Google Scholar 

  56. Rossi A, Formenti D, Vitale JA et al (2015) The effect of chronotype on physiological responses during aerobic self-paced exercises. Percept Mot Skills 121:840–855. https://doi.org/10.2466/27.29.PMS.121c28x1

    Article  PubMed  Google Scholar 

  57. Vitale JA, La Torre A, Baldassarre R et al (2017) Ratings of perceived exertion and self-reported mood state in response to high intensity interval training. A crossover study on the effect of chronotype. Front Psychol 8:1232. https://doi.org/10.3389/fpsyg.2017.01232

    Article  PubMed  PubMed Central  Google Scholar 

  58. Esposito G, Van Horn JD, Weinberger DR, Berman KF (1996) Gender differences in cerebral blood flow as a function of cognitive state with PET. J Nucl Med 37:559–564

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Gentilin.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors in this project.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Ethics Board of the Department of Neurosciences, Biomedicine and Movement Sciences at the University of Verona (prot. No. 165038)) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

The subjects were informed about the aims and the procedures and signed a written consent form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentilin, A., Skroce, K., Schena, F. et al. Prolonged visual reaction time after strenuous endurance exercise: higher increment in male compared to female recreational runners. Sport Sci Health 16, 169–176 (2020). https://doi.org/10.1007/s11332-019-00593-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-019-00593-7

Keywords

Navigation