Skip to main content
Log in

Cohort profile: the Western Australian Sleep Health Study

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background

Epidemiologic and genetic studies of obstructive sleep apnoea (OSA) are limited by a lack of large-scale, well-characterized OSA cohorts. These studies require large sample size to provide adequate power to detect differences between groups. This study describes the development of such a cohort (The Western Australian Sleep Health Study) in OSA patients of Caucasian–European origin attending the only public sleep clinic in Western Australia (WA).

Aims

The main aim of the study is to phenotype 4,000 OSA patients in order to define the genetics of OSA and its co-morbidities.

Methods

Almost all underwent laboratory-based attended polysomnography (PSG).

Results

Currently complete data (questionnaire, biochemistry, DNA, and PSG) has been obtained on over 3,000 individuals and will reach the target of 4,000 individuals by the end of 2010. In a separate but related study, we have developed a sleep study database containing data from all patients who have undergone PSG at the sleep laboratory since its inception in 1988 until the present day (over 30,000 PSG studies representing data from approximately 20,000 individuals). In addition, data from both cohorts have been linked prospectively to statutory health data collected by the WA Department of Health.

Conclusion

This study will be the largest sleep clinic cohort database internationally with access to genetic and epidemiological data. It is unique among sleep clinic cohorts because of its size, the breadth of data collected and the ability to link prospectively to statutory health data. It will be a major tool to comprehensively assess genetic and epidemiologic factors determining OSA and its co-morbidities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. American Academy of Sleep Medicine (1999) Sleep related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep 22:667–690

    Google Scholar 

  2. Gibson GJ (2004) Obstructive sleep apnoea syndrome: underestimated and undertreated. Br Med Bull 72:49–65

    Article  PubMed  CAS  Google Scholar 

  3. Kapur V, Strohl KP, Redline S, Iber C, O’Connor G, Nieto J (2002) Underdiagnosis of sleep apnea syndrome in US communities. Sleep Breath 6(2):49–54

    Article  PubMed  Google Scholar 

  4. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328(17):1230–1235

    Article  PubMed  CAS  Google Scholar 

  5. Bearpark H, Elliott L, Grunstein R, Cullen S, Schneider H, Althaus W, Sullivan C (1995) Snoring and sleep apnea. A population study in Australian men. Am J Respir Crit Care Med 151(5):1459–1465

    PubMed  CAS  Google Scholar 

  6. Lavie P (2002) Incidence of sleep apnea in a presumably healthy working population: a significant relationship with excessive daytime sleepiness. Sleep 25(4):312–318

    PubMed  CAS  Google Scholar 

  7. Engleman HM, Kingshott RN, Martin SE, Douglas NJ (2000) Cognitive function in the sleep apnea/hypopnea syndrome (SAHS). Sleep 23(Suppl 4):S102–S108

    PubMed  Google Scholar 

  8. Teran-Santos J, Jimenez-Gomez A, Cordero-Guevara J (1999) The association between sleep apnea and the risk of traffic accidents. Cooperative Group Burgos-Santander. N Engl J Med 340(11):847–851

    Article  PubMed  CAS  Google Scholar 

  9. Lindberg E, Carter N, Gislason T, Janson C (2001) Role of snoring and daytime sleepiness in occupational accidents. Am J Respir Crit Care Med 164(11):2031–2035

    PubMed  CAS  Google Scholar 

  10. Gall R, Isaac L, Kryger M (1993) Quality of life in mild obstructive sleep apnea. Sleep 16(8 Suppl):S59–S61

    PubMed  CAS  Google Scholar 

  11. Peled N, Greenberg A, Pillar G, Zinder O, Levi N, Lavie P (1998) Contributions of hypoxia and respiratory disturbance index to sympathetic activation and blood pressure in obstructive sleep apnea syndrome. Am J Hypertens 11(11 Pt 1):1284–1289

    Article  PubMed  CAS  Google Scholar 

  12. Strohl KP, Redline S (1996) Recognition of obstructive sleep apnea. Am J Respir Crit Care Med 154(2 Pt 1):279–289

    PubMed  CAS  Google Scholar 

  13. Pepperell JC, Davies RJ, Stradling JR (2002) Systemic hypertension and obstructive sleep apnoea. Sleep Med Rev 6(3):157–173

    Article  PubMed  Google Scholar 

  14. Fletcher EC (2000) Cardiovascular consequences of obstructive sleep apnea: experimental hypoxia and sympathetic activity. Sleep 23(Suppl 4):S127–S131

    PubMed  Google Scholar 

  15. Dincer HE, O’Neill W (2006) Deleterious effects of sleep-disordered breathing on the heart and vascular system. Respiration 73(1):124–130

    Article  PubMed  Google Scholar 

  16. McNicholas WT, Bonsigore MR (2007) Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J 29(1):156–178

    Article  PubMed  CAS  Google Scholar 

  17. Stanley FJ, Watson L (1985) Methodology of a cerebral palsy register. The Western Australian experience. Neuroepidemiology 4(3):146–160

    Article  PubMed  CAS  Google Scholar 

  18. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14(6):540–545

    PubMed  CAS  Google Scholar 

  19. Johns MW (1992) Reliability and factor analysis of the Epworth sleepiness scale. Sleep 15(4):376–381

    PubMed  CAS  Google Scholar 

  20. Lam B, Ip MS, Tench E, Ryan CF (2005) Craniofacial profile in Asian and white subjects with obstructive sleep apnoea. Thorax 60(6):504–510

    Article  PubMed  CAS  Google Scholar 

  21. Tsai WH, Remmers JE, Brant R, Flemons WW, Davies J, Macarthur C (2003) A decision rule for diagnostic testing in obstructive sleep apnea. Am J Respir Crit Care Med 167(10):1427–1432

    Article  PubMed  Google Scholar 

  22. Lowe B, Kroenke K, Herzog W, Grafe K (2004) Measuring depression outcome with a brief self-report instrument: sensitivity to change of the Patient Health Questionnaire (PHQ-9). J Affect Disord 81(1):61–66

    Article  PubMed  Google Scholar 

  23. Simpson L, Mukherjee S, Cooper MN, Ward KL, Lee JD, Fedson AC, Potter J, Hillman Fanzca DR, Eastwood P, Palmer LJ, Kirkness J (2010) Sex differences in the association of regional fat distribution with the severity of obstructive sleep apnea. Sleep 33(4):467–474

    PubMed  Google Scholar 

  24. Knuiman MW, Jamrozik K, Welborn TA, Bulsara MK, Divitini ML, Whittall DE (1995) Age and secular trends in risk factors for cardiovascular disease in Busselton. Aust J Public Health 19(4):375–382

    Article  PubMed  CAS  Google Scholar 

  25. Holman CD, Bass AJ, Rouse IL, Hobbs MS (1999) Population-based linkage of health records in Western Australia: development of a health services research linked database. Aust N Z J Public Health 23(5):453–459

    Article  PubMed  CAS  Google Scholar 

  26. Brameld KJ, Thomas MA, Holman CD, Bass AJ, Rouse IL (1999) Validation of linked administrative data on end-stage renal failure: application of record linkage to a ‘clinical base population’. Aust N Z J Public Health 23(5):464–467

    Article  PubMed  CAS  Google Scholar 

  27. JA KMW, Divitini ML, Bartholomew HC (2005) Correlates of habitual snoring and witnessed apnoeas in Busselton, Western Australia. Aust N Z J Public Health 29:412–415

    Article  Google Scholar 

Download references

Acknowledgments

Funding for the Western Australian Sleep Health study thus far has been obtained from the Sir Charles Gairdner and Hollywood Private Hospital Research Foundations, the State Health Research Advisory Council of Western Australia, the Western Australian Sleep Disorders Research Institute, and the Centre for Genetic Epidemiology and Biostatistics at the University of Western Australia. Informatics and biobanking support is received from the Western Australian Genetic Epidemiology Resource and WA DNA Bank, both National Health and Medical Research Council of Australia Enabling Facilities. The authors gratefully acknowledge all the students and volunteers who have assisted with data collection for the WASHS. The authors thank the sleep clinic patients for their participation in this study, and the Busselton Population Medical Research Foundation. We are also grateful for the support received from WA Sleep Disorders Research Institute, Centre for Genetic Epidemiology and Biostatistics, and PathWest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutapa Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S., Hillman, D., Lee, J. et al. Cohort profile: the Western Australian Sleep Health Study. Sleep Breath 16, 205–215 (2012). https://doi.org/10.1007/s11325-011-0491-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-011-0491-3

Keywords

Navigation