Skip to main content
Log in

Differential respiratory control of the upper airway and diaphragm muscles induced by 5-HT1A receptor ligands

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background

Serotonin (5-HT) has a role in respiratory function and dysfunction. Although 5-HT affects respiratory drive to both phrenic and cranial motoneurons, relatively little is known about the role of 5-HT receptor subtypes in the control of upper airway muscle (UAM) respiratory activity.

Materials and methods

Here, we performed central injections of 5-HT1A agonist (8-OHDPAT) or antagonist (WAY100635) in anesthetized rats and analyzed changes in the electromyographic activity of several UAM and other cardiorespiratory parameters. We also compared the pattern of Fos expression induced after central injection of a control solution or 8-OHDPAT.

Results

Results showed that 8-OHDPAT induced a robust increase in UAM activity, associated with either tachypnea under volatile anesthesia or bradypnea under liquid anesthesia. Injection of WAY100635 switched off UAM respiratory activity and led to bradypnea, suggesting a tonic excitatory role of endogenous 5-HT1A receptor activation. Co-injection of the agonist and the antagonist blocked the effects produced by each drug alone. Besides drug-induced changes in respiratory frequency, only slight increases in surface of diaphragm bursts were observed. Significant increases in Fos expression after 5-HT1A receptor activation were seen in the nucleus tractus solitarius, nucleus raphe pallidus, parapyramidal region, retrotrapezoid nucleus, lateral parabrachial, and Kölliker-Fuse nuclei. This restricted pattern of Fos expression likely identified the neural substrate responsible for the enhancement of UAM respiratory activity observed after 8-OHDPAT injection.

Conclusions

These findings suggest an important role for the 5-HT1A receptors in the neural control of upper airway patency and may be relevant to counteract pharyngeal atonia during obstructive sleep apneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bianchi AL, Gestreau C (2009) The brainstem respiratory network: an overview of a half century of research. Respir Physiol Neurobiol 168(1–2):4–12

    Article  PubMed  Google Scholar 

  2. Sauerland EK, Harper RM (1976) The human tongue during sleep: electromyographic activity of the genioglossus muscle. Exp Neurol 51:160–170

    Article  PubMed  CAS  Google Scholar 

  3. Megirian D, Cespuglio R, Jouvet M (1978) Rhythmical activity of the rat's tongue in sleep and wakefulness. Electroencephalogr Clin Neurophysiol 44:8–13

    Article  PubMed  CAS  Google Scholar 

  4. Haxhiu MA, van Lunteren E, Mitra J, Cherniack NS (1987) Comparison of the response of diaphragm and upper airway dilating muscle activity in sleeping cats. Respir Physiol 70:183–193

    PubMed  CAS  Google Scholar 

  5. Hendricks JC, Petrof BJ, Panckeri K, Pack AI (1993) Upper airway dilating muscle hyperactivity during non-rapid eye movement sleep in English bulldogs. Am Rev Respir Dis 148:185–194

    PubMed  CAS  Google Scholar 

  6. Fenik V, Davies RO, Pack AI, Kubin L (1998) Differential suppression of upper airway motor activity during carbachol-induced, REM sleep-like atonia. Am J Physiol 275:R1013–1024

    PubMed  CAS  Google Scholar 

  7. Feroah TR, Forster HV, Pan L, Wenninger J, Martino P, Rice T (2001) Effect of slow wave and REM sleep on thyropharyngeus and stylopharyngeus activity during induced central apneas. Respir Physiol 124:129–140

    Article  PubMed  CAS  Google Scholar 

  8. Lu JW, Mann GL, Ross RJ, Morrison AR, Kubin L (2005) Differential effect of sleep–wake states on lingual and dorsal neck muscle activity in rats. Respir Physiol Neurobiol 147:191–203

    Article  PubMed  Google Scholar 

  9. Sood S, Raddatz E, Liu X, Liu H, Horner RL (2006) Inhibition of serotonergic medullary raphe obscurus neurons suppresses genioglossus and diaphragm activities in anesthetized but not conscious rats. J Appl Physiol 100:1807–1821

    Article  PubMed  CAS  Google Scholar 

  10. Mezzanotte WS, Tangel DJ, White DP (1992) Waking genioglossal electromyogram in sleep apnea patients versus normal controls (a neuromuscular compensatory mechanism). J Clin Invest 89:1571–1579

    Article  PubMed  CAS  Google Scholar 

  11. Fogel RB, White DP, Pierce RJ, Malhotra A, Edwards JK, Dunai J, Kleverlaan D, Trinder J (2003) Control of upper airway muscle activity in younger versus older men during sleep onset. J Physiol 553:533–544

    Article  PubMed  CAS  Google Scholar 

  12. Fogel RB, Trinder J, White DP, Malhotra A, Raneri J, Schory K, Kleverlaan D, Pierce RJ (2005) The effect of sleep onset on upper airway muscle activity in patients with sleep apnoea versus controls. J Physiol 564:549–562

    Article  PubMed  CAS  Google Scholar 

  13. Katz ES, White DP (2004) Genioglossus activity during sleep in normal control subjects and children with obstructive sleep apnea. Am J Respir Crit Care Med 170:553–560

    Article  PubMed  Google Scholar 

  14. Kurtz D, Krieger J, Stierle JC (1978) EMG activity of cricothyroid and chin muscles during wakefulness and sleeping in the sleep apnea syndrome. Electroencephalogr Clin Neurophysiol 45:777–784

    Article  PubMed  CAS  Google Scholar 

  15. Eckert DJ, Malhotra A, Jordan AS (2009) Mechanisms of apnea. Prog Cardiovasc Dis 51(4):313–323

    Article  PubMed  Google Scholar 

  16. Hilaire G, Voituron N, Menuet C, Ichiyama RM, Subramanian HH, Dutschmann M (2010) The role of serotonin in respiratory function and dysfunction. Respir Physiol Neurobiol 174:76–88

    Article  PubMed  CAS  Google Scholar 

  17. Hilaire G, Morin D, Lajard AM, Monteau R (1993) Changes in serotonin metabolism may elicit obstructive apnoea in the newborn rat. J Physiol 466:367–381

    PubMed  CAS  Google Scholar 

  18. Jacobs BL, Fornal CA (1999) Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 21:9S–15S

    PubMed  CAS  Google Scholar 

  19. Fenik P, Veasey SC (2003) Pharmacological characterization of serotonergic receptor activity in the hypoglossal nucleus. Am J Respir Crit Care Med 167:563–569

    Article  PubMed  Google Scholar 

  20. Besnard S, Massé F, Verdaguer M, Cappelin B, Meurice JC, Gestreau C (2007) Time- and dose-related effects of three 5-HT receptor ligands on the genioglossus activity in anesthetized and conscious rats. Sleep Breath 11:275–284

    Article  PubMed  CAS  Google Scholar 

  21. Morin D, Monteau R, Hilaire G (1992) Compared effects of serotonin on cervical and hypoglossal inspiratory activities: an in vitro study in the newborn rat. J Physiol 451:605–629

    PubMed  CAS  Google Scholar 

  22. Morin D (1993) Compared effects of serotonin on the inspiratory activity of glossopharyngeal, vagal, hypoglossal and cervical motoneurons in neonatal rat brain stem–spinal cord preparations. Neurosci Lett 160:61–64

    PubMed  CAS  Google Scholar 

  23. Rose D, Khater-Boidin J, Toussaint P, Duron B (1995) Central effects of 5HT on respiratory and hypoglossal activities in the adult cat. Respir Physiol 101:59–69

    Article  PubMed  CAS  Google Scholar 

  24. Khater-Boidin J, Rose D, Glérant JC, Duron B (1999) Central effects of 5HT on respiratory rhythm in newborn rats in vivo. Eur J Neurosci 11:3433–3440

    Article  PubMed  CAS  Google Scholar 

  25. Popa D, Léna C, Fabre V, Prenat C, Gingrich J, Escourrou P, Hamon M, Adrien J (2005) Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. J Neurosci 25(49):11231–11238

    Article  PubMed  CAS  Google Scholar 

  26. Besnard S, Denise P, Cappelin B, Dutschmann M, Gestreau C (2009) Stimulation of the rat medullary raphe nuclei induces differential responses in respiratory muscle activity. Respir Physiol Neurobiol 165(2–3):208–214

    Article  PubMed  CAS  Google Scholar 

  27. Hanzel DA, Proia NG, Hudgel DW (1991) Response of obstructive sleep apnea to fluoxetine and protriptyline. Chest 100:416–421

    Article  PubMed  CAS  Google Scholar 

  28. Kraiczi H, Hedner J, Dahlof P, Ejnell H, Carlson J (1999) Effect of serotonin uptake inhibition on breathing during sleep and daytime symptoms in obstructive sleep apnea. Sleep 22:61–67

    PubMed  CAS  Google Scholar 

  29. Berry RB, Yamaura EM, Gill K, Reist C (1999) Acute effects of paroxetine on genioglossus activity in obstructive sleep apnea. Sleep 22:1087–1092

    PubMed  CAS  Google Scholar 

  30. Aghajanian GK (1990) Serotonin-induced inward current in rat facial motoneurons: evidence for mediation by G proteins but not protein kinase C. Brain Res 524(1):171–174

    Article  PubMed  CAS  Google Scholar 

  31. Richter DW, Manzke T, Wilken B, Ponimaskin E (2003) Serotonin receptors: guardians of stable breathing. Trends Mol Med 9(12):542–548

    Article  PubMed  CAS  Google Scholar 

  32. Lalley PM, Benacka R, Bischoff AM, Richter DW (1997) Nucleus raphe obscurus evokes 5HT-1A receptor-mediated modulation of respiratory neurons. Brain Res 747:156–159

    Article  PubMed  CAS  Google Scholar 

  33. Manzke T, Dutschmann M, Schlaf G, Mörschel M, Koch UR, Ponimaskin E, Bidon O, Lalley PM, Richter DW (2009) Serotonin targets inhibitory synapses to induce modulation of network functions. Philos Trans R Soc Lond B Biol Sci 364(1529):2589–2602

    Article  PubMed  CAS  Google Scholar 

  34. Jevtović-Todorović V, Todorović SM, Mennerick S, Powell S, Dikranian K, Benshoff N, Zorumski CF, Olney JW (1998) Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med 4(4):460–463

    Article  PubMed  Google Scholar 

  35. Gestreau C, Bianchi AL, Grelot L (1997) Differential brainstem Fos-like immunoreactivity after laryngeal-induced coughing and its reduction by codeine. J Neurosci 17:9340–9352

    PubMed  CAS  Google Scholar 

  36. Gestreau C, Le Guen S, Besson JM (2000) Is there tonic activity in the endogenous opioid systems? A c-Fos study in the rat central nervous system after intravenous injection of naloxone or naloxone-methiodide. J Comp Neurol 427:285–301

    Article  PubMed  CAS  Google Scholar 

  37. Roda F, Pio J, Bianchi AL, Gestreau C (2004) Effects of anesthetics on hypoglossal nerve discharge and c-Fos expression in brainstem hypoglossal premotor neurons. J Comp Neurol 468:571–586

    Article  PubMed  CAS  Google Scholar 

  38. Stone RA, Barnes PJ, Chung KF (1997) Effect of 5-HT1A receptor agonist, 8-OH-DPAT, on cough responses in the conscious guinea pig. Eur J Pharmacol 332:201–207

    Article  PubMed  CAS  Google Scholar 

  39. Messier ML, Li A, Nattie EE (2004) Inhibition of medullary raphe serotonergic neurons has age-dependent effects on the CO2 response in newborn piglets. J Appl Physiol 96:1909–1919

    Article  PubMed  Google Scholar 

  40. Monteau R, Di Pasquale E, Hilaire G (1994) Further evidence that various 5-HT receptor subtypes modulate central respiratory activity: in vitro studies with SR 46349B. Eur J Pharmacol 259:71–74

    Article  PubMed  CAS  Google Scholar 

  41. Di Pasquale E, Monteau R, Hilaire G (1994) Endogenous serotonin modulates the fetal respiratory rhythm: an in vitro study in the rat. Brain Res Dev Brain Res 80:222–232

    Article  PubMed  Google Scholar 

  42. Haji A, Takeda R, Okazaki M (2000) Neuropharmacology of control of respiratory rhythm and pattern in mature mammals. Pharmacol Ther 86:277–304

    Article  PubMed  CAS  Google Scholar 

  43. Lalley PM (1986) Serotoninergic and non-serotoninergic responses of phrenic motoneurones to raphe stimulation in the cat. J Physiol 380:373–385

    PubMed  CAS  Google Scholar 

  44. Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351:357–373

    Article  PubMed  CAS  Google Scholar 

  45. Holtman JR Jr, Marion LJ, Speck DF (1990) Origin of serotonin-containing projections to the ventral respiratory group in the rat. Neuroscience 37:541–552

    Article  PubMed  Google Scholar 

  46. Gillis RA, Hill KJ, Kirby JS, Quest JA, Hamosh P, Norman WP, Kellar KJ (1989) Effect of activation of central nervous system serotonin 1A receptors on cardiorespiratory function. J Pharmacol Exp Ther 248:851–857

    PubMed  CAS  Google Scholar 

  47. Holtman JR Jr, King KA (1994) Effect of activation of 5HT1A receptors at the ventral medulla on phrenic nerve activity. Eur J Pharmacol 253:307–310

    Article  PubMed  CAS  Google Scholar 

  48. Lalley PM (1986) Responses of phrenic motoneurones of the cat to stimulation of medullary raphe nuclei. J Physiol 380:349–371

    PubMed  CAS  Google Scholar 

  49. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  PubMed  CAS  Google Scholar 

  50. Barnes NM, Sharp T (1999) A review of central 5HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  PubMed  CAS  Google Scholar 

  51. Fort P, Luppi PH, Sakai K, Salvert D, Jouvet M (1990) Nuclei of origin of monoaminergic, peptidergic, and cholinergic afferents to the cat trigeminal motor nucleus: a double-labeling study with cholera-toxin as a retrograde tracer. J Comp Neurol 301:262–275

    Article  PubMed  CAS  Google Scholar 

  52. Li YQ, Takada M, Mizuno N (1993) The sites of origin of serotoninergic afferent fibers in the trigeminal motor, facial, and hypoglossal nuclei in the rat. Neurosci Res 17:307–313

    Article  PubMed  CAS  Google Scholar 

  53. Talley EM, Sadr NN, Bayliss DA (1997) Postnatal development of serotonergic innervation, 5HT1A receptor expression, and 5HT responses in rat motoneurons. J Neurosci 17:4473–4485

    PubMed  CAS  Google Scholar 

  54. Manaker S, Zucchi PC (1998) Autoradiographic localization of neurotransmitter binding sites in the hypoglossal and motor trigeminal nuclei of the rat. Synapse 28:44–59

    Article  PubMed  CAS  Google Scholar 

  55. Singer JH, Berger AJ (1996) Presynaptic inhibition by serotonin: a possible mechanism for switching motor output of the hypoglossal nucleus. Sleep 19:S146–S149

    PubMed  CAS  Google Scholar 

  56. Okabe S, Kubin L (1996) Role of 5HT1 receptors in the control of hypoglossal motoneurons in vivo. Sleep 19:S150–S153

    PubMed  CAS  Google Scholar 

  57. Bouryi VA, Lewis DI (2003) The modulation by 5HT of glutamatergic inputs from the raphe pallidus to rat hypoglossal motoneurones, in vitro. J Physiol 553:1019–1031

    Article  PubMed  CAS  Google Scholar 

  58. Larkman PM, Penington NJ, Kelly JS (1989) Electrophysiology of adult rat facial motoneurones: the effects of serotonin (5HT) in a novel in vitro brainstem slice. J Neurosci Methods 28:133–146

    Article  PubMed  CAS  Google Scholar 

  59. Jackson DA, White SR (1990) Receptor subtypes mediating facilitation by serotonin of excitability of spinal motoneurons. Neuropharmacology 29:787–797

    Article  PubMed  CAS  Google Scholar 

  60. Cao Y, Matsuyama K, Fujito Y, Aoki M (2006) Involvement of medullary GABAergic and serotonergic raphe neurons in respiratory control: electrophysiological and immunohistochemical studies in rats. Neurosci Res 56:322–331

    Article  PubMed  CAS  Google Scholar 

  61. Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 28(3):370–490

    Article  PubMed  CAS  Google Scholar 

  62. Le Guen S, Gestreau C, Besson JM (2001) Sensitivity to naloxone of the behavioral signs of morphine withdrawal and c-Fos expression in the rat CNS: a quantitative dose–response analysis. J Comp Neurol 433(2):272–296

    Article  PubMed  Google Scholar 

  63. Buchanan GF, Richerson GB (2010) Central serotonin neurons are required for arousal to CO2. Proc Natl Acad Sci 107(37):16354–16359

    Article  PubMed  CAS  Google Scholar 

  64. Guyenet PG, Stornetta RL, Bayliss DA (2010) Central respiratory chemoreception. J Comp Neurol 518(19):3883–3906

    Article  PubMed  CAS  Google Scholar 

  65. Voituron N, Frugière A, Champagnat J, Bodineau L (2006) Hypoxia-sensing properties of the newborn rat ventral medullary surface in vitro. J Physiol 577(Pt 1):55–68

    Article  PubMed  CAS  Google Scholar 

  66. Buritova J, Tarayre JP, Besson JM, Colpaert F (2003) The novel analgesic and high-efficacy 5-HT1A receptor agonist, F 13640 induces c-Fos protein expression in spinal cord dorsal horn neurons. Brain Res 974(1–2):212–221

    Article  PubMed  CAS  Google Scholar 

  67. Mikkelsen JD, Hay-Schmidt A, Kiss A (2004) Serotonergic stimulation of the rat hypothalamo-pituitary–adrenal axis: interaction between 5-HT1A and 5-HT2A receptors. Ann NY Acad Sci 1018:65–70

    Article  PubMed  CAS  Google Scholar 

  68. Glass JD, Selim M, Rea MA (1994) Modulation of light-induced C-Fos expression in the suprachiasmatic nuclei by 5-HT1A receptor agonists. Brain Res 638(1–2):235–242

    Article  PubMed  CAS  Google Scholar 

  69. Rioja J, Santín LJ, Doña A, de Pablos L, Minano FJ, Gonzalez-Baron S, Aguirre JA (2006) 5-HT1A receptor activation counteracts c-Fos immunoreactivity induced in serotonin neurons of the raphe nuclei after immobilization stress in the male rat. Neurosci Lett 397(3):190–195

    Article  PubMed  CAS  Google Scholar 

  70. Compaan JC, Groenink L, van der Gugten J, Maes RA, Olivier B (1996) 5-HT1A receptor agonist flesinoxan enhances Fos immunoreactivity in rat central amygdala, bed nucleus of the stria terminalis and hypothalamus. Eur J Neurosci 8(11):2340–2347

    Article  PubMed  CAS  Google Scholar 

  71. Edwards E, Paton JF (2000) Glutamate stimulation of raphe pallidus attenuates the cardiopulmonary reflex in anaesthetised rats. Auton Neurosci 82:87–96

    Article  PubMed  CAS  Google Scholar 

  72. Weissheimer KV, Machado BH (2007) Inhibitory modulation of chemoreflex bradycardia by stimulation of the nucleus raphe obscurus is mediated by 5HT3 receptors in the NTS of awake rats. Auton Neurosci 132:27–36

    Article  PubMed  CAS  Google Scholar 

  73. Gestreau C, Dutschmann M, Obled S, Bianchi AL (2005) Activation of XII motoneurons and premotor neurons during various oropharyngeal behaviors. Resp Physiol Neurobiol 147(2–3):159–176

    Article  Google Scholar 

  74. Cayetanot F, Gros F, Larnicol N (2002) Postnatal changes in the respiratory response of the conscious rat to serotonin 2A/2C receptor activation are reflected in the developmental pattern of fos expression in the brainstem. Brain Res 942(1–2):51–57

    Article  PubMed  CAS  Google Scholar 

  75. Thor KB, Blitz-Siebert A, Helke CJ (1990) Discrete localization of high-density 5-HT1A binding sites in the midline raphe and parapyramidal region of the ventral medulla oblongata of the rat. Neurosci Lett 108:249–254

    Article  PubMed  CAS  Google Scholar 

  76. Moazzami A, Tjen-A-Looi SC, Guo ZL, Longhurst JC (2010) Serotonergic projection from nucleus raphe pallidus to rostral ventrolateral medulla modulates cardiovascular reflex responses during acupuncture. J Appl Physiol 108(5):1336–1346

    Article  PubMed  CAS  Google Scholar 

  77. Dampney RA, Horiuchi J (2003) Functional organisation of central cardiovascular pathways: studies using c-fos gene expression. Prog Neurobiol 71(5):359–384

    Article  PubMed  CAS  Google Scholar 

  78. Won CH, Li KK, Guilleminault C (2008) Surgical treatment of obstructive sleep apnea: upper airway and maxillomandibular surgery. Proc Am Thorac Soc 5:193–199

    Article  PubMed  Google Scholar 

  79. Ogasa T, Ray AD, Michlin C, Farkas GA, Grant BJ, Magalang UJ (2004) Systemic administration of serotonin 2A/2C agonist improves upper airway stability in Zucker rats. Am J Respir Crit Care Med 170:804–810

    Article  PubMed  Google Scholar 

  80. Schmidt HS (1983) l-Tryptophan in the treatment of impaired respiration in sleep. Bull Eur Physiopathol Respir 19:625–629

    PubMed  CAS  Google Scholar 

  81. Fenik VB, Davies RO, Kubin L (2005) Noradrenergic, serotonergic and GABAergic antagonists injected together into the XII nucleus abolish the REM sleep-like depression of hypoglossal motoneuronal activity. J Sleep Res 14:419–429

    Article  PubMed  Google Scholar 

  82. Neuzeret PC, Sakai K, Gormand F, Petitjean T, Buda C, Sastre JP, Parrot S, Guidon G, Lin JS (2009) Application of histamine or serotonin to the hypoglossal nucleus increases genioglossus muscle activity across the wake–sleep cycle. J Sleep Res 18(1):113–121

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Palmer and Martin (Datawave Technology) for their technical assistance in data analysis. This study was supported by grants from Federation ANTADIR (2005) and Sanofi-Aventis (Sleep Research Award “Veille-Sommeil’ French Sleep Research Society Congress, Paris, France 2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephane Besnard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besnard, S., Khemiri, H., Masse, F. et al. Differential respiratory control of the upper airway and diaphragm muscles induced by 5-HT1A receptor ligands. Sleep Breath 16, 135–147 (2012). https://doi.org/10.1007/s11325-010-0466-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-010-0466-9

Keywords

Navigation